Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 243, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327095

RESUMO

BACKGROUND: Although tumor-associated macrophages (TAMs) are essential for cancer progression, connections between different clinical outcomes and transcriptional networks have not been reported. We have addressed this issue by analyzing global expression patterns of TAMs isolated from the ascites of ovarian cancer patients. RESULTS: TAMs isolated from different ovarian cancer patients can be stratified by coexpression or principal component analysis into subgroups with specific biological features and associated with distinct clinical outcomes. A hallmark of subgroup A is a high expression of clinically unfavorable markers, including (i) high CD163 expression, a surface receptor characteristic of an anti-inflammatory activation state, (ii) increased PCOLCE2 expression, indicative of enhanced extracellular matrix organization, and (iii) elevated ascites levels of IL-6 and IL-10, linked to the aggressiveness of ovarian cancer and immune suppression. In contrast, subgroup B TAMs are characterized by the upregulation of genes linked to immune defense mechanisms and interferon (IFN) signaling. Intriguingly, analysis of published data for 1763 ovarian cancer patients revealed a strong association of this transcriptional signature with a longer overall survival. Consistent with these results, IFNγ was able to abrogate the suppressive effect of ovarian cancer ascites on the inducibility of IL12B expression and IL-12 secretion, a key determinant of a cytotoxic immune response. CONCLUSIONS: The survival of ovarian cancer patients is linked to the presence of TAMs with a transcriptional signature that is characterized by a low expression of protumorigenic and immunosuppressive markers and an upregulation of genes linked to interferon signaling. The observed IFNγ-mediated restoration of the inducibility of IL-12 in the presence of ascites provides a possible explanation for the association of an interferon signaling-associated signature with a favorable clinical outcome.


Assuntos
Ascite/patologia , Interferons/metabolismo , Macrófagos/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Transdução de Sinais , Biomarcadores , Análise por Conglomerados , Citocinas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunofenotipagem , Macrófagos/patologia , Neoplasias Ovarianas/patologia , Prognóstico , Reprodutibilidade dos Testes , Transcriptoma , Microambiente Tumoral
2.
Nucleic Acids Res ; 43(10): 5033-51, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25934804

RESUMO

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARß/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARß/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARß/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8(+) T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARß/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARß/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARß/δ in immune regulation.


Assuntos
Redes Reguladoras de Genes , Ativação de Macrófagos , Macrófagos/imunologia , PPAR delta/metabolismo , PPAR beta/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , PPAR delta/agonistas , PPAR beta/agonistas , Transcriptoma
3.
Mol Pharmacol ; 87(2): 162-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25398837

RESUMO

The stilbene derivative (Z)-2-(2-bromophenyl)-3-{[4-(1-methylpiperazine)amino]phenyl}acrylonitrile (DG172) was developed as a highly selective inhibitory peroxisome proliferator-activated receptor (PPAR)ß/δ ligand. Here, we describe a novel PPARß/δ-independent, yet highly specific, effect of DG172 on the differentiation of bone marrow cells (BMCs). DG172 strongly augmented granulocyte-macrophage-colony-stimulating factor (GM-CSF)-induced differentiation of primary BMCs from Ppard null mice into two specific populations, characterized as mature (CD11c(hi)MHCII(hi)) and immature (CD11c(hi)MHCII(lo)) dendritic cells (DCs). IL-4 synergized with DG172 to shift the differentiation from MHCII(lo) cells to mature DCs in vitro. The promotion of DC differentiation occurred at the expense of differentiation to granulocytic Gr1(+)Ly6B(+) cells. In agreement with these findings, transcriptome analyses showed a strong DG172-mediated repression of genes encoding neutrophilic markers in both differentiating wild-type and Ppard null cells, while macrophage/DC marker genes were up-regulated. DG172 also inhibited the expression of transcription factors driving granulocytic differentiation (Cebpe, Gfi1, and Klf5), and increased the levels of transcription factors promoting macrophage/DC differentiation (Irf4, Irf8, Spib, and Spic). DG172 exerted these effects only at an early stage of BMC differentiation induced by GM-CSF, did not affect macrophage-colony-stimulating factor-triggered differentiation to macrophages and had no detectable PPARß/δ-independent effect on other cell types tested. Structure-function analyses demonstrated that the 4-methylpiperazine moiety in DG172 is required for its effect on DC differentiation, but is dispensable for PPARß/δ binding. Based on these data we developed a new compound, (Z)-2-(4-chlorophenyl)-3-[4-(4-methylpiperazine-1-yl)phenyl]acrylonitrile (DG228), which enhances DC differentiation in the absence of significant PPARß/δ binding.


Assuntos
Acrilonitrila/análogos & derivados , Células Dendríticas/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-4/farmacologia , PPAR gama/agonistas , PPAR beta/agonistas , Piperazinas/farmacologia , Acrilonitrila/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem da Célula , Células Cultivadas , Células Dendríticas/metabolismo , Agonismo Inverso de Drogas , Sinergismo Farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/metabolismo , PPAR beta/metabolismo
4.
Int J Cancer ; 134(1): 32-42, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23784932

RESUMO

Ovarian cancer is typically accompanied by the occurrence of malignant ascites containing large number of macrophages. It has been suggested that these tumor-associated macrophages (TAMs) are skewed to alternative polarization (M2) and thereby play an essential role in therapy resistance and metastatic spread. In our study, we have investigated the nature, regulation and clinical correlations of TAM polarization in serous ovarian cancer. Macrophage polarization markers on TAMs and ascites cytokine levels were analyzed for 30 patients and associated with relapse-free survival (RFS) in a prospective study with 20 evaluable patients. Surface expression of the M2 marker CD163 on TAMs was inversely associated with RFS (p < 0.01). However, global gene expression profiles determined for 17 of these patients revealed a mixed-polarization phenotype unrelated to the M1/M2 classification. CD163 surface expression also correlated with the ascites levels of IL-6 and IL-10 (p < 0.05), both cytokines induced CD163 expression, and their ascites levels showed a clear inverse association with RFS (p < 0.01). These findings define a subgroup of patients with high CD163 expression, high IL-6 and/or IL-10 levels and poor clinical outcome.


Assuntos
Ascite/imunologia , Cistadenocarcinoma Seroso/imunologia , Macrófagos/imunologia , Neoplasias Ovarianas/imunologia , Antígenos CD/biossíntese , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/biossíntese , Antígenos de Diferenciação Mielomonocítica/imunologia , Polaridade Celular , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Citocinas/biossíntese , Citocinas/imunologia , Intervalo Livre de Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Estimativa de Kaplan-Meier , Macrófagos/metabolismo , Macrófagos/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fenótipo , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/imunologia , Transcriptoma
5.
Nucleic Acids Res ; 39(1): 119-31, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20846954

RESUMO

Previous work has provided strong evidence for a role of peroxisome proliferator-activated receptor ß/δ (PPARß/δ) and transforming growth factor-ß (TGFß) in inflammation and tumor stroma function, raising the possibility that both signaling pathways are interconnected. We have addressed this hypothesis by microarray analyses of human diploid fibroblasts induced to myofibroblastic differentiation, which revealed a substantial, mostly reverse crosstalk of both pathways and identified distinct classes of genes. A major class encompasses classical PPAR target genes, including ANGPTL4, CPT1A, ADRP and PDK4. These genes are repressed by TGFß, which is counteracted by PPARß/δ activation. This is mediated, at least in part, by the TGFß-induced recruitment of the corepressor SMRT to PPAR response elements, and its release by PPARß/δ ligands, indicating that TGFß and PPARß/δ signals are integrated by chromatin-associated complexes. A second class represents TGFß-induced genes that are downregulated by PPARß/δ agonists, exemplified by CD274 and IL6, which is consistent with the anti-inflammatory properties of PPARß/δ ligands. Finally, cooperative regulation by both ligands was observed for a minor group of genes, including several regulators of cell proliferation. These observations indicate that PPARß/δ is able to influence the expression of distinct sets of both TGFß-repressed and TGFß-activated genes in both directions.


Assuntos
Regulação da Expressão Gênica , PPAR delta/agonistas , PPAR beta/agonistas , Transdução de Sinais , Transcrição Gênica , Fator de Crescimento Transformador beta/farmacologia , Diferenciação Celular , Linhagem Celular , Proteínas Correpressoras/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Elementos de Resposta , Tiazóis/farmacologia , Transcrição Gênica/efeitos dos fármacos
6.
Clin Transl Med ; 13(1): e1176, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647260

RESUMO

BACKGROUND: Basal cell adhesion molecule (BCAM) is a laminin α5 (LAMA5) binding membrane-bound protein with a putative role in cancer. Besides full-length BCAM1, an isoform lacking most of the cytoplasmic domain (BCAM2), and a soluble form (sBCAM) of unknown function are known. In ovarian carcinoma (OC), all BCAM forms are abundant and associated with poor survival, yet BCAM's contribution to peritoneal metastatic spread remains enigmatic. METHODS: Biochemical, omics-based and real-time cell assays were employed to identify the source of sBCAM and metastasis-related functions of different BCAM forms. OC cells, explanted omentum and a mouse model of peritoneal colonisation were used in loss- and gain-of-function experiments. RESULTS: We identified ADAM10 as a major BCAM sheddase produced by OC cells and identified proteolytic cleavage sites proximal to the transmembrane domain. Recombinant soluble BCAM inhibited single-cell adhesion and migration identically to membrane-bound isoforms, confirming its biological activity in OC. Intriguingly, this seemingly anti-tumorigenic potential of BCAM contrasts with a novel pro-metastatic function discovered in the present study. Thus, all queried BCAM forms decreased the compactness of tumour cell spheroids by inhibiting LAMA5 - integrin ß1 interactions, promoted spheroid dispersion in a three-dimensional collagen matrix, induced clearance of mesothelial cells at spheroid attachment sites in vitro and enhanced invasion of spheroids into omental tissue both ex vivo and in vivo. CONCLUSIONS: Membrane-bound BCAM as well as sBCAM shed by ADAM10 act as decoys rather than signalling receptors to modulate metastasis-related functions. While BCAM appears to have tumour-suppressive effects on single cells, it promotes the dispersion of OC cell spheroids by regulating LAMA5-integrin-ß1-dependent compaction and thereby facilitating invasion of metastatic target sites. As peritoneal dissemination is majorly mediated by spheroids, these findings offer an explanation for the association of BCAM with a poor clinical outcome of OC, suggesting novel therapeutic options.


Assuntos
Moléculas de Adesão Celular , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Esferoides Celulares
7.
Theranostics ; 13(6): 1921-1948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064875

RESUMO

Lysophosphatidic acid (LPA) species accumulate in the ascites of ovarian high-grade serous cancer (HGSC) and are associated with short relapse-free survival. LPA is known to support metastatic spread of cancer cells by activating a multitude of signaling pathways via G-protein-coupled receptors of the LPAR family. Systematic unbiased analyses of the LPA-regulated signal transduction network in ovarian cancer cells have, however, not been reported to date. Methods: LPA-induced signaling pathways were identified by phosphoproteomics of both patient-derived and OVCAR8 cells, RNA sequencing, measurements of intracellular Ca2+ and cAMP as well as cell imaging. The function of LPARs and downstream signaling components in migration and entosis were analyzed by selective pharmacological inhibitors and RNA interference. Results: Phosphoproteomic analyses identified > 1100 LPA-regulated sites in > 800 proteins and revealed interconnected LPAR1, ROCK/RAC, PKC/D and ERK pathways to play a prominent role within a comprehensive signaling network. These pathways regulate essential processes, including transcriptional responses, actomyosin dynamics, cell migration and entosis. A critical component of this signaling network is MYPT1, a stimulatory subunit of protein phosphatase 1 (PP1), which in turn is a negative regulator of myosin light chain 2 (MLC2). LPA induces phosphorylation of MYPT1 through ROCK (T853) and PKC/ERK (S507), which is majorly driven by LPAR1. Inhibition of MYPT1, PKC or ERK impedes both LPA-induced cell migration and entosis, while interference with ROCK activity and MLC2 phosphorylation selectively blocks entosis, suggesting that MYPT1 figures in both ROCK/MLC2-dependent and -independent pathways. We finally show a novel pathway governed by LPAR2 and the RAC-GEF DOCK7 to be indispensable for the induction of entosis. Conclusion: We have identified a comprehensive LPA-induced signal transduction network controlling LPA-triggered cytoskeletal changes, cell migration and entosis in HGSC cells. Due to its pivotal role in this network, MYPT1 may represent a promising target for interfering with specific functions of PP1 essential for HGSC progression.


Assuntos
Actomiosina , Neoplasias Ovarianas , Humanos , Feminino , Actomiosina/metabolismo , Entose , Recidiva Local de Neoplasia , Transdução de Sinais , Neoplasias Ovarianas/metabolismo , Movimento Celular/fisiologia
8.
iScience ; 26(12): 108401, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047087

RESUMO

A crucial requirement for metastasis formation in ovarian high-grade serous carcinoma (HGSC) is the disruption of the protective peritoneal mesothelium. Using co-culture systems of primary human cells, we discovered that tumor-associated NK cells induce TRAIL-dependent apoptosis in mesothelial cells via death receptors DR4 and DR5 upon encounter with activated T cells. Upregulation of TRAIL expression in NK cells concomitant with enhanced cytotoxicity toward mesothelial cells was driven predominantly by T-cell-derived TNFα, as shown by affinity proteomics-based analysis of the T cell secretome in conjunction with functional studies. Consistent with these findings, we detected apoptotic mesothelial cells in the peritoneal fluid of HGSC patients. In contrast to mesothelial cells, HGSC cells express negligible levels of both DR4 and DR5 and are TRAIL resistant, indicating cell-type-selective killing by NK cells. Our data point to a cooperative action of T and NK in breaching the mesothelial barrier in HGSC patients.

9.
Mol Oncol ; 16(17): 3146-3166, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35451191

RESUMO

Survival of ovarian carcinoma is associated with the abundance of immunosuppressed CD163high CD206high tumor-associated macrophages (TAMs) and high levels of arachidonic acid (AA) in the tumor microenvironment. Here, we show that both associations are functionally linked. Transcriptional profiling revealed that high CD163 and CD206/MRC1 expression in TAMs is strongly associated with an inhibition of cytokine-triggered signaling, mirrored by an impaired transcriptional response to interferons and IL-6 in monocyte-derived macrophages by AA. This inhibition of pro-inflammatory signaling is caused by dysfunctions of the cognate receptors, indicated by the inhibition of JAK1, JAK2, STAT1, and STAT3 phosphorylation, and by the displacement of the interferon receptor IFNAR1, STAT1 and other immune-regulatory proteins from lipid rafts. AA exposure led to a dramatic accumulation of free AA in lipid rafts, which appears to be mechanistically crucial, as the inhibition of its incorporation into phospholipids did not affect the AA-mediated interference with STAT1 phosphorylation. Inhibition of interferon-triggered STAT1 phosphorylation by AA was reversed by water-soluble cholesterol, known to prevent the perturbation of lipid raft structure by AA. These findings suggest that the pharmacologic restoration of lipid raft functions in TAMs may contribute to the development new therapeutic approaches.


Assuntos
Neoplasias , Microambiente Tumoral , Ácido Araquidônico/metabolismo , Humanos , Macrófagos/metabolismo , Microdomínios da Membrana/metabolismo , Neoplasias/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
10.
Cancers (Basel) ; 14(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551640

RESUMO

Metastasis of high-grade ovarian carcinoma (HGSC) is orchestrated by soluble mediators of the tumor microenvironment. Here, we have used transcriptomic profiling to identify lipid-mediated signaling pathways encompassing 41 ligand-synthesizing enzymes and 23 cognate receptors in tumor, immune and stroma cells from HGSC metastases and ascites. Due to its strong association with a poor clinical outcome, prostacyclin (PGI2) synthase (PTGIS) is of particular interest in this signaling network. PTGIS is highly expressed by cancer-associated fibroblasts (CAF), concomitant with elevated PGI2 synthesis, whereas tumor-associated macrophages (TAM) exhibit the highest expression of its surface receptor (PTGIR). PTGIR activation by PGI2 agonists triggered cAMP accumulation and induced a mixed-polarization macrophage phenotype with altered inflammatory gene expression, including CXCL10 and IL12A repression, as well as reduced phagocytic capability. Co-culture experiments provided further evidence for the interaction of CAF with macrophages via PGI2, as the effect of PGI2 agonists on phagocytosis was mitigated by cyclooxygenase inhibitors. Furthermore, conditioned medium from PGI2-agonist-treated TAM promoted tumor adhesion to mesothelial cells and migration in a PTGIR-dependent manner, and PTGIR activation induced the expression of metastasis-associated and pro-angiogenic genes. Taken together, our study identifies a PGI2/PTGIR-driven crosstalk between CAF, TAM and tumor cells, promoting immune suppression and a pro-metastatic environment.

11.
Mol Pharmacol ; 80(5): 828-38, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21862691

RESUMO

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) is a ligand-regulated nuclear receptor with essential functions in metabolism and inflammation. We have synthesized a new derivative [methyl 3-(N-(4-(hexylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (ST247) structurally related to the published PPARß/δ inhibitory ligand methyl 3-(N-(2-methoxy-4-(phenylamino)phenyl)sulfamoyl)thiophene-2-carboxylate (GSK0660). ST247 has a higher affinity to PPARß/δ than GSK0660, and at equimolar concentrations, it more efficiently 1) induces the interaction with corepressors both in vitro and in vivo, 2) inhibits the agonist-induced transcriptional activity of PPARß/δ, and 3) down-regulates basal level expression of the peroxisome proliferator responsive element-driven PPARß/δ target gene ANGPTL4. Methyl 3-(N-(4-(tert-butylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (PT-S58), another high-affinity derivative from our series, also efficiently inhibits agonist-induced transcriptional activation, but in contrast to ST247, it does not enhance the interaction of PPARß/δ with corepressors. PT-S58 rather prevents corepressor recruitment triggered by the inverse agonist ST247. These findings classify ST247 as an inverse agonist, whereas PT-S58 is the first pure PPARß/δ antagonist described to date. It is noteworthy that ST247 and PT-S58 are also effective on PPRE-independent functions of PPARß/δ: in monocytic cells, both ligands modulate expression of the activation marker CCL2 in the opposite direction as an established PPARß/δ agonist. The possibility to differentially modulate specific functions of PPARß/δ makes these novel compounds invaluable tools to advance our understanding of PPARß/δ biology.


Assuntos
PPAR delta/metabolismo , PPAR beta/metabolismo , Sulfonamidas/metabolismo , Tiofenos/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Primers do DNA , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Camundongos , PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real
12.
J Biol Chem ; 285(38): 29469-79, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20595396

RESUMO

Peroxisome proliferator-activated receptors (PPARs) not only play a key role in regulating metabolic pathways but also modulate inflammatory processes, pointing to a functional interaction between PPAR and cytokine signaling pathways. In this study, we show by genome-wide transcriptional profiling that PPARß/δ and transforming growth factor-ß (TGFß) pathways functionally interact in human myofibroblasts and that a subset of these genes is cooperatively activated by TGFß and PPARß/δ. Using the angiopoietin-like 4 (ANGPTL4) gene as a model, we demonstrate that two enhancer regions cooperate to mediate the observed synergistic response. A TGFß-responsive enhancer located ∼8 kb upstream of the transcriptional start site is regulated by a mechanism involving SMAD3, ETS1, RUNX, and AP-1 transcription factors that interact with multiple contiguous binding sites. A second enhancer (PPAR-E) consisting of three juxtaposed PPAR response elements is located in the third intron ∼3.5 kb downstream of the transcriptional start site. The PPAR-E is strongly activated by all three PPAR subtypes, with a novel type of PPAR response element motif playing a central role. Although the PPAR-E is not regulated by TGFß, it interacts with SMAD3, ETS1, RUNX2, and AP-1 in vivo, providing a possible mechanistic explanation for the observed synergism.


Assuntos
Angiopoietinas/genética , PPAR delta/metabolismo , PPAR beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína 4 Semelhante a Angiopoietina , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , PPAR delta/agonistas , PPAR beta/agonistas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Tiazóis/farmacologia , Fator de Crescimento Transformador beta/genética
13.
Clin Transl Med ; 11(11): e633, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841720

RESUMO

BACKGROUND: Transcoelomic spread is the major route of metastasis of ovarian high-grade serous carcinoma (HGSC) with the omentum as the major metastatic site. Its unique tumour microenvironment with its large populations of adipocytes, mesothelial cells and immune cells establishes an intercellular signaling network that is instrumental for metastatic growth yet poorly understood. METHODS: Based on transcriptomic analysis of tumour cells, tumour-associated immune and stroma cells we defined intercellular signaling pathways for 284 cytokines and growth factors and their cognate receptors after bioinformatic adjustment for contaminating cell types. The significance of individual components of this network was validated by analysing clinical correlations and potentially pro-metastatic functions, including tumour cell migration, pro-inflammatory signal transduction and TAM expansion. RESULTS: The data show an unexpected prominent role of host cells, and in particular of omental adipocytes, mesothelial cells and fibroblasts (CAF), in sustaining this signaling network. These cells, rather than tumour cells, are the major source of most cytokines and growth factors in the omental microenvironment (n = 176 vs. n = 13). Many of these factors target tumour cells, are linked to metastasis and are associated with a short survival. Likewise, tumour stroma cells play a major role in extracellular-matrix-triggered signaling. We have verified the functional significance of our observations for three exemplary instances. We show that the omental microenvironment (i) stimulates tumour cell migration and adhesion via WNT4 which is highly expressed by CAF; (ii) induces pro-tumourigenic TAM proliferation in conjunction with high CSF1 expression by omental stroma cells and (iii) triggers pro-inflammatory signaling, at least in part via a HSP70-NF-κB pathway. CONCLUSIONS: The intercellular signaling network of omental metastases is majorly dependent on factors secreted by immune and stroma cells to provide an environment that supports ovarian HGSC progression. Clinically relevant pathways within this network represent novel options for therapeutic intervention.


Assuntos
Redes Reguladoras de Genes/fisiologia , Metástase Neoplásica/fisiopatologia , Neoplasias Ovarianas/fisiopatologia , Movimento Celular/genética , Movimento Celular/fisiologia , Feminino , Redes Reguladoras de Genes/genética , Humanos , Metástase Neoplásica/imunologia , Neoplasias Ovarianas/imunologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
14.
Theranostics ; 11(3): 1377-1395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391540

RESUMO

Arachidonic acid (AA) is a polyunsaturated fatty acid present at high concentrations in the ovarian cancer (OC) microenvironment and associated with a poor clinical outcome. In the present study, we have unraveled a potential link between AA and macrophage functions. Methods: AA-triggered signal transduction was studied in primary monocyte-derived macrophages (MDMs) by phosphoproteomics, transcriptional profiling, measurement of intracellular Ca2+ accumulation and reactive oxygen species production in conjunction with bioinformatic analyses. Functional effects were investigated by actin filament staining, quantification of macropinocytosis and analysis of extracellular vesicle release. Results: We identified the ASK1 - p38δ/α (MAPK13/14) axis as a central constituent of signal transduction pathways triggered by non-metabolized AA. This pathway was induced by the Ca2+-triggered activation of calmodulin kinase II, and to a minor extent by ROS generation in a subset of donors. Activated p38 in turn was linked to a transcriptional stress response associated with a poor relapse-free survival. Consistent with the phosphorylation of the p38 substrate HSP27 and the (de)phosphorylation of multiple regulators of Rho family GTPases, AA impaired actin filament organization and inhibited actin-driven macropinocytosis. AA also affected the phosphorylation of proteins regulating vesicle biogenesis, and consistently, AA enhanced the release of tetraspanin-containing exosome-like vesicles. Finally, we identified phospholipase A2 group 2A (PLA2G2A) as the clinically most relevant enzyme producing extracellular AA, providing further potentially theranostic options. Conclusion: Our results suggest that AA contributes to an unfavorable clinical outcome of OC by impacting the phenotype of tumor-associated macrophages. Besides critical AA-regulated signal transduction proteins identified in the present study, PLA2G2A might represent a potential prognostic tool and therapeutic target to interfere with OC progression.


Assuntos
Ácido Araquidônico/farmacologia , Macrófagos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cálcio/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Fosfolipases A2 do Grupo II/metabolismo , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
15.
Mol Pharmacol ; 77(2): 171-84, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19903832

RESUMO

Peroxisome proliferator-activated receptor (PPARs) modulate target gene expression in response to unsaturated fatty acid ligands, such as arachidonic acid (AA). Here, we report that the AA metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) activates the ligand-dependent activation domain (AF2) of PPARbeta/delta in vivo, competes with synthetic agonists in a PPARbeta/delta ligand binding assay in vitro, and triggers the interaction of PPARbeta/delta with coactivator peptides. These agonistic effects were also seen with PPARalpha and PPARgamma, but to a significantly weaker extent. We further show that 15-HETE strongly induces the expression of the bona fide PPAR target gene Angptl4 in a PPARbeta/delta-dependent manner and, conversely, that inhibition of 15-HETE synthesis reduces PPARbeta/delta transcriptional activity. Consistent with its function as an agonistic ligand, 15-HETE triggers profound changes in chromatin-associated PPARbeta/delta complexes in vivo, including the recruitment of the coactivator cAMP response element-binding protein binding protein. Both 15R-HETE and 15S-HETE are similarly potent at inducing PPARbeta/delta coactivator binding and transcriptional activation, indicating that 15-HETE enantiomers generated by different pathways function as PPARbeta/delta agonists.


Assuntos
Ácidos Hidroxieicosatetraenoicos/farmacologia , PPAR delta/agonistas , PPAR beta/agonistas , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Fibroblastos/química , Fibroblastos/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/biossíntese , Ácidos Hidroxieicosatetraenoicos/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Células NIH 3T3 , PPAR delta/genética , PPAR delta/fisiologia , PPAR beta/genética , PPAR beta/fisiologia , Transativadores/biossíntese , Transativadores/genética , Transativadores/fisiologia
16.
Mol Oncol ; 14(9): 2142-2162, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32533757

RESUMO

A hallmark of ovarian high-grade serous carcinoma (HGSC) is its early and massive peritoneal dissemination via the peritoneal fluid. It is generally believed that tumor cells must breach the mesothelium of peritoneal organs to adhere to the underlying extracellular matrix (ECM) and initiate metastatic growth. However, the molecular mechanisms underlying these processes are only partially understood. Here, we have analyzed 52 matched samples of spheroids and solid tumor masses (suspected primary lesions and metastases) from 10 patients by targeted sequencing of 21 loci previously proposed as targets of HGSC driver mutations. This analysis revealed very similar patterns of genetic alterations in all samples. One exception was FAT3 with a strong enrichment of mutations in metastases compared with presumed primary lesions in two cases. FAT3 is a putative tumor suppressor gene that codes for an atypical cadherin, pointing a potential role in peritoneal dissemination in a subgroup of HGSC patients. By contrast, transcriptome data revealed clear and consistent differences between tumor cell spheroids from ascites and metastatic lesions, which were mirrored by the in vitro adherence of ascites-derived spheroids. The adhesion-induced transcriptional alterations in metastases and adherent cells resembled epithelial-mesenchymal transition, but surprisingly also included the upregulation of a specific subset of mesothelial genes, such as calretinin (CALB2) and podoplanin (PDPN). Consistent with this finding, calretinin staining was also observed in subsets of tumor cells in HGSC metastases, particularly at the invasive tumor edges. Intriguingly, a high expression of either CALB2 or PDPN was strongly associated with a poor clinical outcome. siRNA-mediated CALB2 silencing triggered the detachment of adherent HGSC cells in vitro and inhibited the adhesion of detached HGSC cells to collagen type I. Our data suggest that the acquisition of a mesenchymal-mesothelial phenotype contributes to cancer cell adhesion to the ECM of peritoneal organs and HGSC progression.


Assuntos
Epitélio/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Regulação para Cima/genética , Apoptose/genética , Ascite/genética , Ascite/patologia , Biomarcadores Tumorais/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Intervalo Livre de Doença , Feminino , Humanos , Gradação de Tumores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Peritoneais/secundário , Polimorfismo de Nucleotídeo Único/genética , Esferoides Celulares/patologia , Resultado do Tratamento
17.
Mol Oncol ; 13(2): 185-201, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30353652

RESUMO

The peritoneal fluid of ovarian carcinoma patients promotes cancer cell invasion and metastatic spread with lysophosphatidic acid (LPA) as a potentially crucial mediator. However, the origin of LPA in ascites and the clinical relevance of individual LPA species have not been addressed. Here, we show that the levels of multiple acyl-LPA species are strongly elevated in ascites versus plasma and are associated with short relapse-free survival. Data derived from transcriptome and secretome analyses of primary ascite-derived cells indicate that (a) the major route of LPA synthesis is the consecutive action of a secretory phospholipase A2 (PLA2 ) and autotaxin, (b) that the components of this pathway are coordinately upregulated in ascites, and (c) that CD163+CD206+ tumor-associated macrophages play an essential role as main producers of PLA2 G7 and autotaxin. The latter conclusion is consistent with mass spectrometry-based metabolomic analyses of conditioned medium from ascites cells, which showed that tumor-associated macrophages, but not tumor cells, are able to produce 20:4 acyl-LPA in lipid-free medium. Furthermore, our transcriptomic data revealed that LPA receptor (LPAR) genes are expressed in a clearly cell type-selective manner: While tumor cells express predominantly LPAR1-3, macrophages and T cells also express LPAR5 and LPAR6 at high levels, pointing to cell type-selective LPA signaling pathways. RNA profiling identified cytokines linked to cell motility and migration as the most conspicuous class of LPA-induced genes in macrophages, suggesting that LPA exerts protumorigenic properties at least in part via the tumor secretome.


Assuntos
Lisofosfolipídeos/biossíntese , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Microambiente Tumoral , Ascite/metabolismo , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Metaboloma , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Ovarianas/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Resultado do Tratamento , Microambiente Tumoral/genética , Regulação para Cima/genética
18.
Mol Pharmacol ; 74(5): 1269-77, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18701617

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that modulate target gene expression in response to natural fatty acid ligands and synthetic agonists. It is noteworthy that all trans-retinoic acid (atRA) has recently been reported to act as a ligand for PPARbeta/delta, to activate its transcriptional activity, and, in contrast to the "classic" function of atRA, to stimulate cell proliferation (Schug et al., 2007). Here, we report that in contrast to synthetic PPARbeta/delta agonists, atRA failed to induce the transcriptional activity of PPARbeta/delta using different types of reporter gene assays. Likewise, atRA did not affect the expression of the bona fide PPARbeta/delta target genes ADRP and ANGPTL4 but strongly increased expression of the retinoic acid target gene CYP26A under the identical experimental conditions. Consistent with these observations, atRA did not compete with established PPARbeta/delta agonists in a ligand binding assay, and atRA did not enable the interaction of PPARbeta/delta with a coactivator peptide in a time-resolved fluorescence resonance energy transfer assay in vitro. These results are in sharp contrast to the effect of established PPARbeta/delta agonists in both in vitro assays. Taken as a whole, these data strongly suggest that atRA does not function as a ligand of PPARbeta/delta in any of the experimental systems tested and that the previously reported atRA effects are more likely to reflect an uncharacterized and less direct mechanism.


Assuntos
PPAR delta/metabolismo , PPAR beta/metabolismo , Tretinoína/farmacologia , Animais , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Ligantes , Camundongos , Células NIH 3T3 , PPAR delta/agonistas , PPAR delta/fisiologia , PPAR beta/agonistas , PPAR beta/fisiologia , Transcrição Gênica/fisiologia
19.
Front Immunol ; 9: 1425, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997615

RESUMO

Tumors frequently exploit homeostatic mechanisms that suppress expression of IL-12, a central mediator of inflammatory and anti-tumor responses. The p40 subunit of the IL-12 heterodimer, encoded by IL12B, is limiting for these functions. Ovarian carcinoma patients frequently produce ascites which exerts immunosuppression by means of soluble factors. The NFκB pathway is necessary for transcription of IL12B, which is not expressed in macrophages freshly isolated from ascites. This raises the possibility that ascites prevents IL12B expression by perturbing NFκB binding to chromatin. Here, we show that ascites-mediated suppression of IL12B induction by LPS plus IFNγ in primary human macrophages is rapid, and that suppression can be reversible after ascites withdrawal. Nuclear translocation of the NFκB transcription factors c-REL and p65 was strongly reduced by ascites. Surprisingly, however, their binding to the IL12B locus and to CXCL10, a second NFκB target gene, was unaltered, and the induction of CXCL10 transcription was not suppressed by ascites. These findings indicate that, despite its reduced nuclear translocation, NFκB function is not generally impaired by ascites, suggesting that ascites-borne signals target additional pathways to suppress IL12B induction. Consistent with these data, IL-10, a clinically relevant constituent of ascites and negative regulator of NFκB translocation, only partially recapitulated IL12B suppression by ascites. Finally, restoration of a defective IL-12 response by appropriate culture conditions was observed only in macrophages from a subset of donors, which may have important implications for the understanding of patient-specific immune responses.

20.
FEBS J ; 274(19): 5068-76, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17803688

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that modulate target gene expression in response to fatty acid ligands. Their regulation by post-translational modifications has been reported but is poorly understood. In the present study, we investigated whether ligand binding affects the turnover and ubiquitination of the PPARbeta subtype (also known as PPARdelta). Our data show that the ubiquitination and degradation of PPARbeta is not significantly influenced by the synthetic agonist GW501516 under conditions of moderate PPARbeta expression. By contrast, the overexpression of PPARbeta dramatically enhanced its degradation concomitant with its polyubiquitination and the formation of high molecular mass complexes containing multiple, presumably oligomerized PPARbeta molecules that lacked stoichiometical amounts of the obligatory PPARbeta dimerization partner, retinoid X receptor. The formation of these apparently aberrant complexes, as well as the ubiquitination and destabilization of PPARbeta, were strongly inhibited by GW501516. Our findings suggest that PPARbeta is subject to complex post-translational regulatory mechanisms that partly may serve to safeguard the cell against deregulated PPARbeta expression. Furthermore, our data have important implications regarding the widespread use of overexpression systems to evaluate the function and regulation of PPARs.


Assuntos
PPAR beta/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Cromatografia em Gel , Humanos , Imunoprecipitação , Ligantes , Camundongos , PPAR beta/agonistas , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA