RESUMO
Black gram (Vigna mungo) seeds are a rich source of digestible proteins, however, during storage these seeds are severely damaged by bruchids (Callosobruchus spp.), reducing seed quality and yield losses. Most of the cultivated genotypes of black gram are susceptible to bruchids, however, few tolerant genotypes have also been identified but the mechanism of tolerance is poorly understood. We employed Suppression Subtractive Hybridization (SSH) to identify specifically, but rarely expressed bruchid egg induced genes in black gram. In this study, Suppression Subtractive Hybridization (SSH) library was constructed to study the genes involved in defense response in black gram against bruchid infestation. An EST library of 277 clones was obtained for further analyses. Based on CAP3 assembly, 134 unigenes were computationally annotated using Blast2GOPRO software. In all, 20 defense related genes were subject to quantitative PCR analysis (qPCR) out of which 12 genes showed up-regulation in developing seeds of the pods oviposited by bruchids. Few major defense genes like defensin, pathogenesis related protein (PR), lipoxygenase (LOX) showed high expression levels in the oviposited population when compared with the non-oviposited plants. This is the first report on defense related gene transcript dynamics during the bruchid-black gram interaction using SSH library. This library would be useful to clone defense related gene(s) such as defensin as represented in our library for crop improvement.