Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 146: 237-240, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969451

RESUMO

Exploring the vast extraterrestrial space is an inevitable trend with continuous human development. Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future. Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched. Herein, we briefly review the related wastewater characteristics and the history of water treatment in space stations, and we focus on future challenges and perspectives, aiming at providing insights for optimizing wastewater treatment technologies and closing the water cycle in future.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Voo Espacial
2.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630187

RESUMO

Antibacterial modification is a chemical-free method to mitigate biofouling, but surface accumulation of bacteria shields antibacterial groups and presents a significant challenge in persistently preventing membrane biofouling. Herein, a great synergistic effect of electrorepulsion and quaternary ammonium (QA) inactivation on maintaining antibacterial activity against biofouling has been investigated using an electrically conductive QA membrane (eQAM), which was fabricated by polymerization of pyrrole with QA compounds. The electrokinetic force between negatively charged Escherichia coli and cathodic eQAM prevented E. coli cells from reaching the membrane surface. More importantly, cathodic eQAM accelerated the detachment of cells from the eQAM surface, particularly for dead cells whose adhesion capacity was impaired by inactivation. The number of dead cells on the eQAM surface was declined by 81.2% while the number of live cells only decreased by 49.9%. Characterization of bacteria accumulation onto the membrane surface using an electrochemical quartz crystal microbalance revealed that the electrorepulsion accounted for the cell detachment rather than inactivation. In addition, QA inactivation mainly contributed to minimizing the cell adhesion capacity. Consequently, the membrane fouling was significantly declined, and the final normalized water flux was promoted higher than 20% with the synergistic effect of electrorepulsion and QA inactivation. This work provides a unique long-lasting strategy to mitigate membrane biofouling.

3.
Environ Sci Technol ; 57(8): 3013-3020, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36786864

RESUMO

Membrane science and technology is growing rapidly worldwide and continues to play an increasingly important role in diverse fields by offering high separation efficiency with low energy consumption. Membranes have also shown great promise for "green" separation. A majority of the investigations in the field are devoted to the membrane fabrication and modification with the ultimate goals of enhancing the properties and separation performance of membranes. However, less attention has been paid to membrane life cycle management, particularly at the end of service. This is becoming very important, especially taking into account the trends toward sustainable development and carbon neutrality. On the contrary, this can be a great opportunity considering the large variety of membrane processes, especially in terms of the size and capacity of plants in operation. This work aims to highlight the prominent aspects that govern membrane life cycle management with special attention to life cycle assessment (LCA). While fabrication, application, and recycling are the three key aspects of LCA, we focus here on membrane (module) recycling at the end of life by elucidating the relevant aspects, potential criteria, and strategies that effectively contribute to the achievement of green development and sustainability goals.


Assuntos
Reciclagem , Tecnologia , Animais , Estágios do Ciclo de Vida
4.
J Am Chem Soc ; 143(35): 14242-14252, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34431669

RESUMO

The transport of hydrated ions across nanochannels is central to biological systems and membrane-based applications, yet little is known about their hydrated structure during transport due to the absence of in situ characterization techniques. Herein, we report experimentally resolved ion dehydration during transmembrane transport using modified in situ liquid ToF-SIMS in combination with MD simulations for a mechanistic reasoning. Notably, complete dehydration was not necessary for transport to occur across membranes with sub-nanometer pores. Partial shedding of water molecules from ion solvation shells, observed as a decrease in the average hydration number, allowed the alkali-metal ions studied here (lithium, sodium, and potassium) to permeate membranes with pores smaller than their solvated size. We find that ions generally cannot hold more than two water molecules during this sterically limited transport. In nanopores larger than the size of the solvation shell, we show that ionic mobility governs the ion hydration number distribution. Viscous effects, such as interactions with carboxyl groups inside the membrane, preferentially hinder the transport of the mono- and dihydrates. Our novel technique for studying ion solvation in situ represents a significant technological leap for the nanofluidics field and may enable important advances in ion separation, biosensing, and battery applications.


Assuntos
Transporte de Íons , Lítio/química , Potássio/química , Sódio/química , Água/química , Dispositivos Lab-On-A-Chip , Membranas Artificiais , Microfluídica/instrumentação , Nylons/química , Viscosidade
5.
Environ Sci Technol ; 55(8): 5442-5452, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33710872

RESUMO

Cake layer formation is the dominant ultrafiltration membrane fouling mechanism after long-term operation. However, precisely analyzing the cake-layer structure still remains a challenge due to its thinness (micro/nano scale). Herein, based on the excellent depth-resolution and foulant-discrimination of time-of-flight secondary ion mass spectrometry, a three-dimensional analysis of the cake-layer structure caused by natural organic matter was achieved at lower nanoscale for the first time. When humic substances or polysaccharides coexisted with proteins separately, a homogeneous cake layer was formed due to their interactions. Consequently, membrane fouling resistances induced by proteins were reduced by humic substances or polysaccharides, leading to a high flux. However, when humic substances and polysaccharides coexisted, a sandwich-like cake layer was formed owing to the asynchronous deposition based on molecular dynamics simulations. As a result, membrane fouling resistances were superimposed, and the flux was low. Furthermore, it is interesting that cake-layer structures were relatively stable under common UF operating conditions (i.e., concentration and stirring). These findings better elucidate membrane fouling mechanisms of different natural-organic-matter mixtures. Moreover, it is demonstrated that membrane fouling seems lower with a more homogeneous cake layer, and humic substances or polysaccharides play a critical role. Therefore, regulating the cake-layer structure by feed pretreatment scientifically based on proven mechanisms should be an efficient membrane-fouling-control strategy.


Assuntos
Ultrafiltração , Purificação da Água , Substâncias Húmicas , Membranas Artificiais
6.
Environ Res ; 196: 110353, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33130167

RESUMO

Integrated ultrafiltration (UF) membrane-based processes are promising drinking water treatment technologies. However, the membrane module always remains static, resulting in membrane fouling through the gradual formation of a thick cake layer. As floc-based cake layers are loose, in the present study, a membrane module spiral rotation was introduced with the aim of regulating the cake layers. The cake layer thickness readily decreased and the UF membrane fouling was alleviated. The results showed that Al-based flocs were not easily removed from the membrane surface during rotation due to its low density; as a result, the likelihood of humic acid (HA) reaching the membrane surface was low. Computational fluid dynamics indicated that a strong shearing force was generated with high rotation height. Thus, the cake layer thickness was easily regulated, and the UF membrane fouling was further alleviated. However, the floc-based cake layer could be broken by strong shearing forces, thereby allowing HA molecules to directly reach the membrane surface and further aggravating membrane fouling. In comparison to alkaline condition, the UF membrane performed better under acidic conditions, particularly in terms of HA removal, due to the smaller floc size and higher positive charge. Additionally, excellent UF membrane performance was also observed when treating raw water, indicating the potential application.


Assuntos
Água Potável , Purificação da Água , Substâncias Húmicas/análise , Membranas Artificiais , Rotação , Ultrafiltração
7.
Environ Res ; 195: 110756, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33493536

RESUMO

Pre-coagulation is commonly used with ultrafiltration (UF) to alleviate the membrane fouling. Compared to conventional coagulation-sedimentation-UF (CSUF) processes, the direct coagulation-UF (CUF) processes are widely believed to perform better due to the formation of a looser cake layer. It is however shown in this study that not only the density of a cake layer, but also its thickness as well, can affect the membrane fouling behavior, which therefore are influenced by both the sedimentation time and flocs characteristics. Herein, the membrane fouling performance of Fe-based coagulation-UF process was systematically investigated with different sedimentation times. A critical threshold of 30 min was observed at the lab-scale: if shorter than that, the membrane fouling depended mainly on the cake layer density, and thus CUF outperformed CSUF; but when the sedimentation time was over 30 min, the cake layer thickness turned to be the dominant factor, thereby resulting in CSUF performing better. Furthermore, it was shown that the critical sedimentation time was decided by flocs characteristics. A lower water temperature induced the formation of irregular flocs with a lower fractal dimension, and the corresponding cake layer exhibited an almost identical density with increasing sedimentation time. In this regard, CSUF processes were constantly superior to CUF as the cake layer thickness decreased. On the other hand, a critical sedimentation time reappeared because of the higher floc fractal dimension under acidic conditions. This work showed for the first time that the membrane fouling of CSUF was up to the sedimentation time, and it was possible to outperform CUF if the sedimentation time exceeded a critical threshold. Such a finding is crucial to the future development of coagulation integrated UF processes.


Assuntos
Ultrafiltração , Purificação da Água , Membranas Artificiais
8.
J Environ Sci (China) ; 110: 160-168, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34593187

RESUMO

Cyanobacterial bloom has many adverse effects on source water quality and drinking water production. The traditional water treatment process can hardly achieve satisfactory removal of algae cells. This review examines the impact of pre-oxidation on the removal of cyanobacteria by solid-liquid separation processes. It was reported that the introduction of chemical oxidants such as chlorine, potassium permanganate, and ozone in algae-laden water pretreatment could improve algae removal by the subsequent solid-liquid separation processes. However, over dosed oxidants can result in more serious water quality risks due to significant algae cell lysis and undesirable intracellular organic matter release. It was suggested that moderate pre-oxidation may enhance the removal of cyanobacteria without damaging algae cells. In this article, effects of moderate pretreatment on the solid-liquid separation processes (sedimentation, dissolved air flotation, and membrane filtration) are reviewed.


Assuntos
Cianobactérias , Água Potável , Purificação da Água , Oxirredução , Permanganato de Potássio
9.
J Environ Sci (China) ; 90: 10-19, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081307

RESUMO

Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a "dynamic protection layer", as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.


Assuntos
Substâncias Húmicas , Ultrafiltração , Purificação da Água , Membranas Artificiais , Peso Molecular
10.
J Environ Sci (China) ; 77: 273-281, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30573091

RESUMO

Protein-like substances always induce severe ultrafiltration (UF) membrane fouling. To systematically understand the effect of proteins, regenerated cellulose UF membrane (commonly used for protein separation) performance was investigated in the presence of bovine serum albumin (BSA) under various water conditions. Results showed that although trypsin enhanced the membrane flux via proteolysis, catalysis took a long time. Membrane fouling was alleviated at high solution pH and low water temperature owing to the strong electrostatic repulsion force among BSA molecules. Both Na+ and Ca2+ could increase membrane flux. However, Ca2+ played a bridging role between adjacent BSA molecules, whereas membrane fouling was alleviated via a hydration repulsion force with Na+. The order of influence on membrane fouling was as follows: Ca2+ concentration > Na+ concentration > pH > temperature > trypsin concentration. Furthermore, a polyvinylidene fluoride UF membrane experiment showed that Ca2+ could reduce the fouling induced by BSA. Thus, the differences in UF membrane performance will have application potential for alleviating UF membrane fouling induced by proteins during water treatment.


Assuntos
Incrustação Biológica , Membranas Artificiais , Soroalbumina Bovina/metabolismo , Ultrafiltração , Purificação da Água , Animais , Cálcio/química , Bovinos , Celulose/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Temperatura , Tripsina/metabolismo
12.
J Environ Sci (China) ; 78: 267-275, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665645

RESUMO

Microplastics have caused great concern worldwide recently due to their ubiquitous presence within the marine environment. Up to now, most attention has been paid to their sources, distributions, measurement methods, and especially their eco-toxicological effects. With microplastics being increasingly detected in freshwater, it is urgently necessary to evaluate their behaviors during coagulation and ultrafiltration (UF) processes. Herein, the removal behavior of polyethylene (PE), which is easily suspended in water and is the main component of microplastics, was investigated with commonly used Fe-based salts. Results showed that although higher removal efficiency was induced for smaller PE particles, low PE removal efficiency (below 15%) was observed using the traditional coagulation process, and was little influenced by water characteristics. In comparison to solution pH, PAM addition played a more important role in increasing the removal efficiency, especially anionic PAM at high dosage (with efficiency up to 90.9%). The main reason was ascribed to the dense floc formation and high adsorption ability because of the positively charged Fe-based flocs under neutral conditions. For ultrafiltration, although PE particles could be completely rejected, slight membrane fouling was caused owing to their large particle size. The membrane flux decreased after coagulation; however, the membrane fouling was less severe than that induced by flocs alone due to the heterogeneous nature of the cake layer caused by PE, even at high dosages of Fe-based salts. Based on the behavior exhibited during coagulation and ultrafiltration, we believe these findings will have potential application in drinking water treatment.


Assuntos
Água Potável/química , Plásticos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Floculação , Ferro/química , Membranas Artificiais , Plásticos/análise , Ultrafiltração/métodos , Poluentes Químicos da Água/análise
13.
J Environ Sci (China) ; 73: 117-126, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30290860

RESUMO

Pre-oxidation is widely used to reduce ultrafiltration membrane fouling. However, the variation in the composition of microbial communities and extracellular polymeric substances (EPSs) accompanying pre-oxidation in drinking water treatment has received little attention. In this study, hydrogen peroxide (H2O2) was used in a coagulation-ultrafiltration process with Al2(SO4)3·18H2O. A long-term reactor experiment (60d) showed that pre-oxidation alleviated membrane fouling, mainly due to its inhibition of microbial growth, as observed by flow cytometry measurements of the membrane tank water. Further analysis of the formed cake layer demonstrated that the corresponding levels of EPS released from the microbes were lower with than without H2O2 treatment. In comparison to polysaccharides, proteins dominated the EPS. 2D-electrophoresis showed little difference (p>0.05, Student's t-test) in the composition of proteins in the cake layer between the treatments with and without H2O2. The molecular weights of proteins ranged from approximately 30-50kDa and the majority of isoelectric points ranged from 6 to 8. High-throughput sequencing showed that the predominant bacteria were Proteobacteria, Bacteroidetes, and Verrucomicrobia in both cake layers. However, the relative abundance of Planctomycetes was higher in the cake layer with H2O2 pre-oxidation, which was likely probably due to the strong oxidative resistance of its cell wall. Overall, our findings clarify the fundamental molecular mechanism in H2O2 pre-oxidation for ultrafiltration membrane bio-fouling alleviation in drinking water treatment.


Assuntos
Incrustação Biológica/prevenção & controle , Água Potável/química , Membranas Artificiais , Purificação da Água/métodos , Água Potável/microbiologia , Peróxido de Hidrogênio , Ultrafiltração
14.
J Environ Sci (China) ; 63: 96-104, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29406122

RESUMO

Coagulation plays an important role in alleviating membrane fouling, and a noticeable problem is the development of microorganisms after long-time operation, which gradually secrete extracellular polymeric substances (EPS). To date, few studies have paid attention to the behavior of microorganisms in drinking water treatment with ultrafiltration (UF) membranes. Herein, the membrane biofouling was investigated with different aluminum and iron salts. We found that Al2(SO4)3·18H2O performed better in reducing membrane fouling due to the slower growth rate of microorganisms. In comparison to Al2(SO4)3·18H2O, more EPS were induced with Fe2(SO4)3·xH2O, both in the membrane tank and the sludge on the cake layer. We also found that bacteria were the major microorganisms, of which the concentration was much higher than those of fungi and archaea. Further analyses showed that Proteobacteria was dominant in bacterial communities, which caused severe membrane fouling by forming a biofilm, especially for Fe2(SO4)3·xH2O. Additionally, the abundances of Bacteroidetes and Verrucomicrobia were relatively higher in the presence of Al2(SO4)3·18H2O, resulting in less severe biofouling by effectively degrading the protein and polysaccharide in EPS. As a result, in terms of microorganism behaviors, Al-based salts should be given preference as coagulants during actual operations.


Assuntos
Incrustação Biológica , Ferro/química , Sais/química , Purificação da Água/métodos , Alumínio , Ultrafiltração
15.
Sci Total Environ ; 946: 174383, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38960197

RESUMO

Cyanobacterial blooms are a common and serious problem in global freshwater environments. However, the response mechanisms of various cyanobacterial genera to multiple nutrients and pollutants, as well as the factors driving their competitive dominance, remain unclear or controversial. The relative abundance and cell density of two dominant cyanobacterial genera (i.e., Cyanobium and Microcystis) in river ecosystems along a gradient of anthropogenic disturbance were predicted by random forest with post-interpretability based on physicochemical indices. Results showed that the optimized predictions all reached strong fitting with R2 > 0.75, and conventional water quality indices played a dominant role. One-dimensional and two-dimensional partial dependence plot (PDP) revealed that the responses of Cyanobium and Microcystis to nutrients and temperature were similar, but they showed differences in preferrable nutrient utilization and response to pollutants. Further prediction and PDP for the ratio of Cyanobium and Microcystis unveiled that their distinct responses to PAHs and SPAHs were crucial drivers for their competitive dominance over each other. This study presents a new way for analyzing the response of cyanobacterial genera to multiple environmental factors and their dominance relationships by interpretable machine learning, which is suitable for the identification and interpretation of high-dimensional nonlinear ecosystems with complex interactions.


Assuntos
Cianobactérias , Monitoramento Ambiental , Aprendizado de Máquina , Rios , Cianobactérias/crescimento & desenvolvimento , Rios/microbiologia , Monitoramento Ambiental/métodos , Ecossistema , Eutrofização
16.
Environ Sci Ecotechnol ; 19: 100344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192688

RESUMO

Rapid advancement in aerospace technology has successfully enabled long-term life and economic activities in space, particularly in Low Earth Orbit (LEO), extending up to 2000 km from the mean sea level. However, the sustainance of the LEO Economy and its Environmental Control and Life Support System (ECLSS) still relies on a regular cargo supply of essential commodities (e.g., water, food) from Earth, for which there still is a lack of adequate and sustainable technologies. One key challenge in this context is developing water treatment technologies and standards that can perform effectively under microgravity conditions. Solving this technical challenge will be a milestone in providing a scientific basis and the necessary support mechanisms for establishing permanent bases in outer space and beyond. To identify clues towards solving this challenge, we looked back at relevant scientific research exploring novel technologies and standards for deep space exploration, also considering feedback for enhancing these technologies on land. Synthesizing our findings, we share our outlook for the future of drinking water treatment in microgravity. We also bring up a new concept for space aquatic chemistry, considering the closed environment of engineered systems operating in microgravity.

17.
Heliyon ; 9(4): e15092, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089304

RESUMO

Recent investigations have shown that the addition of manganese (Mn) sand to constructed wetlands (i.e., Mn-amended CWs) can improve the performance of organic micropollutants (MPs) removal. In addition to the direct oxidation and adsorption of Mn oxides, the indirect role of Mn oxides in MP biotransformation is crucial to the removal of MPs but has seldom been referred to. Herein, we constructed lab-scale CWs with or without the addition of natural Mn sand (∼35% Mn oxides) to decipher the influence of Mn oxides on the biotransformation of the six selected MPs which commonly existed in the wastewater. The experimental results showed that the addition of Mn sand to CWs can improve the removal of MPs (8.48% atrazine, 13.16% atenolol, and 6.27% sulfamethoxazole [pairwise Wilcoxon test p < 0.05]). Combining the detection of transformation products and metagenomic sequencing, we found that the enhanced removal of atrazine in the Mn-amended CWs was mainly due to the bioaugmented hydroxylation process. The enrichment of biotransformation-related genes and associated microbes of atenolol and sulfamethoxazole in Mn-amended CWs indicated that the addition of Mn sand to CWs can strengthen the biotransformation of MPs. Furthermore, we found that these MP-biodegrading microbes were widely present in the full-scale CWs. Overall, our research provides fundamental information and insights for further application of Mn-amended CWs in MP removal.

18.
Water Res ; 242: 120226, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364354

RESUMO

The three-dimensional (3D) structure of the cake layer, which could be influenced by water quality factors, plays a significant role in the ultrafiltration (UF) efficiency of water purification. However, it remains challenging to precisely reveal the variation of cake layer 3D structures and water channel characteristics. Herein, we systematically report the variation in the cake layer 3D structure at the nanoscale induced by key water quality factors and reveal its influence on water transport, in particular the abundance of water channels within the cake layer. In comparison with pH and Na+, Ca2+ played more significant role in determining cake layer structures. The sandwich-like cake layer, which was induced by the asynchronous deposition of humic acids and sodium alginate (SA), shifted to an isotropic structure when Ca2+ was present due to the Ca2+ bridging. In comparison with the sandwich-like structure, the isotropic cake layer has higher fractions of free volume (voids) and more water channels, leading to a 147% improvement in the water transport coefficient, 60% reduction in the cake layer resistance, and 21% increase in the final membrane specific flux. Our work elucidates a structure-property relationship where improving the isotropy of the cake layer 3D structure is conducive to the optimization of water channels and water transport within cake layers. This could inspire tailored regulation strategies for cake layers to enhance the UF efficiency of water purification.


Assuntos
Ultrafiltração , Purificação da Água , Ultrafiltração/métodos , Qualidade da Água , Membranas Artificiais , Purificação da Água/métodos , Substâncias Húmicas/análise
19.
Water Res ; 236: 119941, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054609

RESUMO

The variation in cake layer three-dimensional (3D) structures and related water channel characteristics induced by coagulation pretreatment remains unclear; however, gaining such knowledge will aid in improving ultrafiltration (UF) efficiency for water purification. Herein, the regulation of cake layer 3D structures (3D distribution of organic foulants within cake layers) by Al-based coagulation pretreatment was analyzed at the micro/nanoscale. The sandwich-like cake layer of humic acids and sodium alginate induced without coagulation was ruptured, and foulants were gradually uniformly distributed within the floc layer (toward an isotropic structure) with increasing coagulant dosage (a critical dosage was observed). Furthermore, the structure of the foulant-floc layer was more isotropic when coagulants with high Al13 concentrations were used (either AlCl3 at pH 6 or polyaluminum chloride, in comparison with AlCl3 at pH 8 where small-molecular-weight humic acids were enriched near the membrane). These high Al13 concentrations lead to a 48.4% higher specific membrane flux than that seen for UF without coagulation. Molecular dynamics simulations revealed that with increasing Al13 concentration (Al13: 6.2% to 22.6%), the water channels within the cake layer were enlarged and more connected, and the water transport coefficient was improved by up to 54.1%, indicating faster water transport. These findings demonstrate that facilitating an isotropic foulant-floc layer with highly connected water channels by coagulation pretreatment with high-Al13-concentration coagulants (having a strong ability to complex organic foulants) is the key issue in optimizing the UF efficiency for water purification. The results should provide further understanding of the underlying mechanisms of coagulation-enhancing UF behavior and inspire precise design of coagulation pretreatment to achieve efficient UF.


Assuntos
Purificação da Água , Água , Ultrafiltração/métodos , Substâncias Húmicas/análise , Purificação da Água/métodos , Membranas Artificiais
20.
Nat Commun ; 14(1): 6590, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852952

RESUMO

Electrocatalytic oxidation offers opportunities for sustainable environmental remediation, but it is often hampered by the slow mass transfer and short lives of electro-generated radicals. Here, we achieve a four times higher kinetic constant (18.9 min-1) for the oxidation of 4-chlorophenol on the reactive electrochemical membrane by reducing the pore size from 105 to 7 µm, with the predominate mechanism shifting from hydroxyl radical oxidation to direct electron transfer. More interestingly, such an enhancement effect is largely dependent on the molecular structure and its sensitivity to the direct electron transfer process. The spatial distributions of reactant and hydroxyl radicals are visualized via multiphysics simulation, revealing the compressed diffusion layer and restricted hydroxyl radical generation in the microchannels. This study demonstrates that both the reaction kinetics and the electron transfer pathway can be effectively regulated by the spatial confinement effect, which sheds light on the design of cost-effective electrochemical platforms for water purification and chemical synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA