RESUMO
The manganese (Mn) export protein SLC30A10 is essential for Mn excretion via the liver and intestines. Patients with SLC30A10 deficiency develop Mn excess, dystonia, liver disease, and polycythemia. Recent genome-wide association studies revealed a link between the SLC30A10 variant T95I and markers of liver disease. The in vivo relevance of this variant has yet to be investigated. Using in vitro and in vivo models, we explore the impact of the T95I variant on SLC30A10 function. While SLC30A10 I95 expressed at lower levels than T95 in transfected cell lines, both T95 and I95 variants protected cells similarly from Mn-induced toxicity. Adeno-associated virus 8-mediated expression of T95 or I95 SLC30A10 using the liver-specific thyroxine binding globulin promoter normalized liver Mn levels in mice with hepatocyte Slc30a10 deficiency. Furthermore, Adeno-associated virus-mediated expression of T95 or I95 SLC30A10 normalized red blood cell parameters and body weights and attenuated Mn levels and differential gene expression in livers and brains of mice with whole body Slc30a10 deficiency. While our in vivo data do not indicate that the T95I variant significantly compromises SLC30A10 function, it does reinforce the notion that the liver is a key site of SLC30A10 function. It also supports the idea that restoration of hepatic SLC30A10 expression is sufficient to attenuate phenotypes in SLC30A10 deficiency.
Assuntos
Substituição de Aminoácidos , Proteínas de Transporte de Cátions , Dependovirus , Fígado , Manganês , Mutação , Animais , Camundongos , Peso Corporal , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Dependovirus/genética , Eritrócitos , Estudo de Associação Genômica Ampla , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Manganês/metabolismo , Intoxicação por Manganês/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Globulina de Ligação a Tiroxina/genéticaRESUMO
Hyperglycemia, glucose intolerance and elevated insulin levels frequently occur in burned patients; however, the mechanism(s) for this insulin resistance has not been fully elucidated. One possible mechanism could involve alterations in the phosphorylation of serine 307 of the insulin receptor substrate-1 (IRS-1) via activation of stress kinase enzymes, including SAPK/JNK. In the present study we examined the time course of the effect of burn injury to mice on: levels of IRS-1 protein, phosphorylation of serine 307 of IRS-1, SAPK/JNK kinase levels and activity and Akt kinase activity in hind limb skeletal muscle. Burn injury produced a reduction in hind limb muscle mass 24 h after injury, and, which persisted for 168 h. At 24 h after injury, there was a dramatic ( approximately 9-fold) increase in phosphorylation of IRS-1 serine 307 followed by a more moderate elevation thereafter. Total IRS-1 protein was slightly elevated at 24 h after injury and decreased to levels below sham treated animals at the later times. Burn injury did not appear to change total SAPK/JNK protein content, however, enzyme activity was increased for 7 days after injury. Akt kinase activity was decreased in skeletal muscle following burn injury; providing a biochemical basis for burn-induced insulin resistance. These findings are consistent with the hypothesis that burn-induced insulin resistance may be related, at least in part, to alterations in the phosphorylation of key proteins in the insulin signaling cascade, including IRS-1, and that changes in stress kinases, such as SAPK/JNK produced by burn injury, may be responsible for these changes in phosphorylation.
Assuntos
Queimaduras/complicações , Modelos Animais de Doenças , Ativação Enzimática , Resistência à Insulina , Fosfoproteínas/metabolismo , Animais , Queimaduras/metabolismo , Membro Posterior/citologia , Membro Posterior/lesões , Membro Posterior/metabolismo , Proteínas Substratos do Receptor de Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4 , Masculino , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina/metabolismo , Transdução de SinaisRESUMO
Postburn alterations in the morphology and metabolism of brain tissue have been previously reported. It was demonstrated in our previous study that thermal injury decreased glucose usage in rat brain during the ebb phase. The cellular and molecular signaling events that trigger the pathophysiologic alterations, however, have not yet been characterized. In the present report, the authors have examined the effect of burn injury on mitogen-activated protein kinases (MAPKs) activities and insulin signaling in the brain tissue. Rats were subjected to 50% total body surface area full thickness scald injury. Brain samples were collected at 6 hours after injury. Tissue lysates were analyzed for MAPKs activities, insulin receptor substrate (IRS)-1 expression, and Akt activity which were determined by western blot and immunoprecipitation. Burn injury stimulated the stress-responsive components, SAPK/JNK, p38 MAP kinase and p44/42 MAP kinase, and increased IRS-1 expression and Akt activity. There was no change, however, on the phosphorylation of Ser307 of IRS-1 in brain tissue. The present data is consistent with the hypothesis that activation of the three major MAPKs pathways appears to be events involved in the mechanisms of burn injury induced insulin resistance and encephalopathy. Changes in signal transduction pathways in the brain after burn injury provide the underlying molecular mechanism of neurologic abnormalities (burn encephalopathy) that occur in burn patients.
Assuntos
Encéfalo/fisiopatologia , Queimaduras/complicações , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Queimaduras/fisiopatologia , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina , Proteínas Quinases JNK Ativadas por Mitógeno , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Proteína Quinase 8 Ativada por Mitógeno , Modelos Animais , RatosRESUMO
Brown adipose tissue (BAT) contains numerous mitochondria and is characterized by the presence of uncoupling protein 1 (UCP1). UCP1 is the main mediator of thermogenesis that plays an important role in the modulation of energy balance. The authors hypothesize that alterations in the expression of UCP1 might be involved in the major metabolic disorders occurring during burn trauma. The present study is designed to explore the potential role of the UCP1 in metabolic disorders after burn injury. The authors have used the real-time reverse transcription-polymerase chain reaction to quantify UCP1 mRNA expression in the mice BAT and white adipose tissue (WAT). UCP1 mRNA expression was up-regulated in BAT, especially at 24 hours after burn. UCP1 mRNA expression was detectable and also up-regulated by burn injury in WAT. The authors provide evidence that one of the mechanisms mediating hypermetabolism and increased energy expenditure in burn injury is a pronounced increase in thermogenic capacity, as illustrated by robust gene expression of UCP1 in BAT and WAT.