Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11625-11636, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38848335

RESUMO

Dissolved organic matter (DOM) exists widely in natural water, which inevitably influences microplastic (MP) photoaging. Nevertheless, the impacts of DOM fractions with diverse molecular structures on MP photoaging remain to be elucidated. This study explored the photoaging mechanisms of polylactic acid (PLA)-MPs and polystyrene (PS)-MPs in the presence of DOM and its subfractions (hydrophobic acid (HPOA), hydrophobic neutral (HPON), and hydrophilic (HPI)). Across DOM fractions, HPI exhibited the highest electron accepting capacity (23 µmol e- (mg C)-1) due to its abundant tannin-like species (36.8%) with carboxylic groups, which facilitated more reactive oxygen species generation (particularly hydroxyl radical), leading to the strongest photoaging rate of two MPs by HPI. However, the sequences of bond cleavage during photoaging of each MPs were not clearly shifted as revealed by two-dimensional infrared correlation spectra. Inconspicuous effects on the extent of PS- and PLA-MPs photoaging were observed for HPOA and HPON, respectively. This was mainly ascribed to the occurrence of inhibitory mechanisms (e.g., light-shielding and quenching effect) counteracting the reactive oxygen species-promoting effects. The findings identified the HPI fraction of DOM for promoting PS- and PLA-MPs photoaging rate and first constructed a link among DOM molecular structures, redox properties, and effects on MP photoaging.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Microplásticos , Oxirredução , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Poliestirenos/química , Poliésteres/química , Poluentes Químicos da Água/química
2.
Environ Sci Technol ; 58(12): 5567-5577, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488517

RESUMO

The development of efficient defluorination technology is an important issue because the kind of emerging pollutant of hexafluoropropylene oxide dimer acid (GenX) as an alternative to perfluorooctanoic acid (PFOA) has the higher environmental risks. In the UV/bisulfite system, we first developed a hydrophobic confined α-Fe2O3 nanoparticle layer rich in oxygen vacancies, which accelerated the enrichment of HSO3- and GenX on the surface and pores through electrostatic attraction and hydrophobic interaction, retaining more hydrated electrons (eaq-) and rapidly destroying GenX under UV excitation. Especially, under anaerobic and aerobic conditions, the degradation percentage of GenX obtain nearly 100%, defluorination of GenX to 88 and 57% respectively. It was amazed to find that the three parallel H/F exchange pathways triggered by the rapid reactions of eaq- and GenX, which were unique to anaerobic conditions, improved the efficiency of fluoride removal and weaken the interference of dissolved oxygen and H+. Therefore, this study provided an available material and mechanism for sustainable fluoride removal from wastewater in aerobic and anaerobic conditions.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Elétrons , Fluoretos , Caprilatos/química
3.
J Environ Manage ; 351: 119658, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056332

RESUMO

Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Solo/química , Ecossistema , Melhoria de Qualidade , Poluentes do Solo/química , Metais , Carvão Vegetal/química
4.
J Environ Manage ; 354: 120153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394868

RESUMO

Aggravated metal pollution in wetland and riparian zones has become a global environmental issue, necessitating the identification of sustainable remediation approaches. Salix exhibits great potential as a viable candidate for metal(loid) remediation. However, the underlying mechanisms for its effectiveness in different flooding regimes with Pb pollution have not been extensively studied. In this study, fast-growing Salix×jiangsuensis 'J172' was selected and planted in different Pb polluted soils (control, 400 and 800 mg ∙ kg-1) under non-flooded and flooded (CF: continuous flooding and IF: intermittent flooding) conditions for 60 days. This study aimed to explore the effects of flooding on Salix growth performance, physiological traits, and the relationship between Pb uptake/translocation and root Fe plaques. Salix×jiangsuensis 'J172' exhibited excellent tolerance and adaptation to Pb pollution with a tolerance index (TI) exceeding 0.6, even at the highest Pb levels. Moreover, the TIs under flooded conditions were higher than that under non-flooded conditions, suggesting that flooding could alleviate Pb toxicity under co-exposure to Pb and flooding. Leaf malondialdehyde (MDA) exhibited a dose-dependent response to Pb exposure; however, CF or IF mitigated the oxidative damage induced by Pb toxicity with decreased MDA content (2.2-11.9%). The superoxide dismutase and peroxidase activities were generally enhanced by flooding, but combined stress (flooding and Pb) significantly decreased catalase activity. Pb was predominantly accumulated in Salix roots, and flooding markedly increased root Pb accumulation by 19.2-173.0% compared to non-flooded condition. Additionally, a significant positive correlation was observed between the iron (Fe) content of the root plaque and root Pb accumulation, indicating that the formation of Fe plaque on the root surface could enhance the phytostabilization of Pb in Salix. The current findings highlight that fast-growing woody plants are suitable for phyto-management of metal-polluted wetlands and can potentially minimize the risk of metal mobility in soils.


Assuntos
Salix , Poluentes do Solo , Ferro , Chumbo/toxicidade , Biodegradação Ambiental , Antioxidantes/farmacologia , Plantas , Solo , Poluentes do Solo/análise , Raízes de Plantas/química
5.
Environ Sci Technol ; 57(30): 11218-11230, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470751

RESUMO

Nanoplastics (NPs), as an emerging contaminant, have usually been found charged in the environment, posing threats to aquatic animals. However, the underlying mechanisms governing the gut toxicity of differentially charged NPs to benthic insects are not well understood. In this study, the gut toxicity in larvae of Chironomus kiinensis exposed to negatively charged NPs (PS-COOH, 50 nm) and positively charged NPs (PS-NH2, 50 nm) at 0.1 and 1 g/kg was investigated through fluorescence imaging, histopathology, biochemical approaches, and 16S rRNA sequencing. The results showed that PS-NH2 caused more adverse effect on the larval growth performance and induced more severe oxidative stress, epithelial damage, and inflammatory responses in the gut than PS-COOH. The stronger impact caused by PS-NH2 was because the gut accumulated PS-NH2 more readily than PS-COOH for its negatively charged cell membrane. In addition, PS-NH2 were less agglomerated compared with PS-COOH, leading to an increased interaction with gut cell membranes and microbiota. Furthermore, alpha diversity and relative abundance of the keystone microbiota related to gut barrier and nutrient absorption were markedly lower exposed to PS-NH2 than PS-COOH, indirectly exacerbating stronger gut and growth damage. This study provides novel insights into the effect mechanisms underlying differentially charged NPs on benthic insects.


Assuntos
Chironomidae , Microbioma Gastrointestinal , Nanopartículas , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Microplásticos , RNA Ribossômico 16S/genética , Insetos , Larva/metabolismo , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Environ Sci Technol ; 55(20): 13432-13442, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34236843

RESUMO

The use of nanotechnology to suppress crop diseases has attracted increasing attention in agriculture. The present work investigated the antifungal efficacy of copper oxide nanoparticle (CuO NP)-embedded hydrogels, which were synthesized by loading CuO nanoparticles (NPs) in hydrogels formed from cross-linked interaction between chitosan and acrylic acid, against Fusarium wilt of lettuce (Lactuca sativa) caused by Fusarium oxysporum f. sp. lactucae. In comparison with CuO NPs, 7-day Cu dissolution from CuO NP-embedded hydrogels was 34.2-94.8% slower regardless of media type, including water, potato dextrose broth, or a soil extract. In a greenhouse study, upon exposure to CuO NP-embedded hydrogels, CuO NPs, or Kocide 3000 with equivalent amounts of Cu (31 mg/kg), the fresh shoot biomass was significantly increased by 40.5, 26.1 and 27.2%, respectively, as compared to that of the infected control. Notably, CuO NP-embedded hydrogels enhanced uptake of P, Mn, Zn, and Mg and increased the levels of organic acids as compared to the diseased control. Increased salicylic acid (SA) and decreased jasmonic acid (JA) and abscisic acid (ABA) levels with the addition of different forms of Cu may have enhanced disease resistance. Taken together, our findings provide useful information and approach for improving the delivery efficiency of agrichemicals via nanoenabled strategies and an advanced understanding of plant defense mechanisms triggered by Cu-based NPs.


Assuntos
Fusarium , Nanopartículas Metálicas , Cobre , Hidrogéis , Lactuca , Nutrientes , Óxidos
7.
Environ Sci Technol ; 55(20): 13513-13522, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33683110

RESUMO

Projected population increases over the next 30 years have elevated the need to develop novel agricultural technologies to dramatically increase crop yield, particularly under conditions of high pathogen pressure. In this study, silica nanoparticles (NPs) with tunable dissolution rates were synthesized and applied to watermelon (Citrullus lanatus) to enhance plant growth while mitigating development of the Fusarium wilt disease caused by Fusarium oxysporum f. sp. niveum. The hydrolysis rates of the silica particles were controlled by the degree of condensation or the catalytic activity of aminosilane. The results demonstrate that the plants treated with fast dissolving NPs maintained or increased biomass whereas the particle-free plants had a 34% decrease in biomass. Further, higher silicon concentrations were measured in root parts when the plants were treated with fast dissolving NPs, indicating effective silicic acid delivery. In a follow-up field study over 2.5 months, the fast dissolving NP treatment enhanced fruit yield by 81.5% in comparison to untreated plants. These findings indicate that the colloidal behavior of designed nanoparticles can be critical to nanoparticle-plant interactions, leading to disease suppression and plant health as part of a novel strategy for nanoenabled agriculture.


Assuntos
Citrullus , Fusarium , Nanopartículas , Doenças das Plantas , Dióxido de Silício , Solubilidade
8.
Environ Sci Technol ; 55(20): 13465-13476, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34078076

RESUMO

The present study investigated the mechanisms by which large- and small-sized nanoscale hydroxyapatite (nHA) suppressed Fusarium-induced wilt disease in tomato. Both nHA sizes at 9.3 mg/L (low) and 46.5 mg/L (high dose) phosphorus (P) were foliar-sprayed on Fusarium-infected tomato leaf surfaces three times. Diseased shoot mass was increased by 40% upon exposure to the low dose of large-sized nHA compared to disease controls. Exposure to both nHA sizes significantly elevated phenylalanine ammonialyase activity and total phenolic content in Fusarium-infected shoots by 30-80% and 40-68%, respectively. Shoot salicylic acid content was also increased by 10-45%, suggesting the potential relationship between antioxidant and phytohormone pathways in nHA-promoted defense against fungal infection. Exposure to the high dose of both nHA sizes increased the root P content by 27-46%. A constrained analysis of principal coordinates suggests that high dose of both nHA sizes significantly altered the fatty acid profile in diseased tomato. Particularly, the diseased root C18:3 content was increased by 28-31% in the large-sized nHA treatments, indicating that nHA remodeled the cell membrane as part of defense against Fusarium infection. Taken together, our findings demonstrate the important role of nHA in promoting disease suppression for the sustainable use of nHA in nanoenabled agriculture.


Assuntos
Fusarium , Solanum lycopersicum , Durapatita , Doenças das Plantas , Ácido Salicílico
9.
Int J Phytoremediation ; 23(10): 1104-1112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33501836

RESUMO

To screen the efficient tree-herb co-planting patterns to remediate the heavy metal polluted soil, a greenhouse experiment was conducted for 150 days to examine the plant growth and metals accumulation across three co-planting patterns, including Solanum nigrum (S) co-planted with Quercus nuttallii (NS) or Quecrus pagoda (PS), and those three species are co-planted together (NPS). Results showed that the NPS pattern slightly decreased the tree biomass, while NS and PS treatments improved the plant growth (1.51-10.68%). It is worth noting that the NS treatment significantly (p < 0.05) increased photosynthetic pigment content (82.61-113.93%), net CO2 assimilation (21.44%), and the uptake of Cd (44.58%) in Q. nuttallii; the PS treatment significantly (p < 0.05) increased the net CO2 assimilation (8.61%) and the uptake of Cd (42.23%), Zn (31.18%) in Q. pagoda; and the uptake of Cd and Zn in the NPS co-planting treatment were only slightly increased. For S. nigrum, the photosynthetic pigment content was elevated and the metal accumulation in itself also maintained the relative stable in all the co-planting treatments. Thus, co-planting of Quercus with S. nigrum was a promising way to remediate heavily polluted soil by heavy metals. Novelty statement: Co-planting with multiple plant species, as a novel strategy, has great value for the remediation of heavy metal contaminated soil. The paper aimed to explore the suitable co-planting pattern of Quercus, arbor trees which showed phytoremediation potential, co-planted with Cd hyperaccumulator, Solanum nigrum. The result suggested the co-planting with S. nigrum enhanced the plant growth, photosynthesis, and metals extraction of Q. nuttallii and Q. pagoda. Co-planting also improved ecological adaptation of S. nigrum via elevating pigment content. Thus, co-planting of Quercus with S. nigrum was a promising way to remediate polluted soil.


Assuntos
Quercus , Poluentes do Solo , Solanum nigrum , Biodegradação Ambiental , Cádmio/análise , Solo , Poluentes do Solo/análise
10.
Int J Phytoremediation ; 23(4): 387-399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33174478

RESUMO

We investigated the effects of bamboo biochar (BBC) as soil amendment on growth and phytoremediation potential of Salix psammophila in soil heavily polluted by Cd and Zn. Bamboo biochar was added to soil at ratios ranging from 1 to 7% (w/w), which significantly increased the organic matter, available potassium (K) content, while decreased the hydrolyzable nitrogen (N) content and the levels of total and bioavailable HMs in soil. The BBC amendment at ratios of 1% to 5% showed little effect on growth of plant, whereas at 7% ratio significantly decreased biomass compared to the control. BBC amendment stimulated the accumulation of Cu, Cd and Zn in plant tissues, meanwhile, Cd and Zn accumulation were more evident, especially in the BBC-3% treatment. BBC amendment improved the TF and BCF values of Cd, Zn and Cu compared to control. Higher BCF for Cd (BCF >1) and TF for Zn (TF >1) values indicate Salix psammophila have considerable potential for phytoremediation efficiency in BBC amended soil treatment. This study provides practical evidence of the efficient BBC-assisted phytoremediation capability of Salix psammophila and highlights its potential as a viable and inexpensive approach for in situ remediation.


Assuntos
Metais Pesados , Salix , Sasa , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Metais Pesados/análise , Solo , Poluentes do Solo/análise
11.
Int J Phytoremediation ; 23(6): 658-668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33251831

RESUMO

Biochar shows great potential in soil remediation. The benefits of biochar on soil depend onits intrinsic properties and soil characteristics. However, the influence of particle sizes of biochar on soil remediation is not clear. In a pot experiment, we evaluated the effects of bamboo biochar (BBC) particle sizes (P1 < 0.15 mm, 0.15 mm < P2 < 0.25 mm, 0.25 mm < P3 < 0.50 mm) on phytoremediation efficiency of Salix psammophila C. cultivated in multi-metal polluted soil. We added the BBC at 3% (w/w) in tested soil. Next, the BBC was thoroughly mixed with soil and weighting to the pot, and S. psammophila cuttings were planted and grown for six months in the amended soil under model growth condition.Results revealed the addition of different sizes of BBC particles affected soil quality, plant growth, and HMs accumulation in plants. All sizes of BBC treatments improved Cd and Zn accumulation, whereas plants in P2 treatment showed the greatest accumulation, increased by 52.41 and 25.55% compared with the control (1,503 and 19,928 µg·plant-1). Overall, the results indicated BBC enhanced the phytoremediation efficiency of S. psammophila. Plants cultivated in P2 treatment showed the most significant effect on remediating contaminated soil.


Assuntos
Salix , Sasa , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Tamanho da Partícula , Solo , Poluentes do Solo/análise
12.
Environ Res ; 170: 1-6, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554052

RESUMO

In the present study, we investigated the antifungal effects of engineered nanomaterials (ENMs) against Podosphaera pannosa (P. pannosa), a fungal pathogen that causes powdery mildew on plants in the rose family. Four commercial ENMs, including multi-wall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), copper oxide (CuO) nanoparticles (NPs) and titanium dioxide (TiO2) NPs, were used to prepare 50 or 200 mg/L NP suspensions in deionized water. Rose leaves in water-agar plates were sprayed by different ENM suspensions mixed with P. pannosa conidia. After a 19-day standard infection test, the growth of P. pannosa on rose leaves was evaluated. All four ENMs inhibited infection by P. pannosa at the concentration 200 mg/L, whereas only CuO NPs decreased fungal growth at 50 mg/L. The phytohormone content of the leaves was measured across all treatments to investigate potential ENMs antifungal mechanisms. The results suggest that ENMs increased plant resistance to fungal infection by altering the content of endogenous hormones, particularly zeatin riboside (ZR). Our study demonstrates that ENMs exhibited distinctly antifungal effects against P. pannosa on roses, and could be utilized as a novel plant protection strategy after a comprehensive assessment of potential environmental risk.


Assuntos
Nanotubos de Carbono , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas , Folhas de Planta/microbiologia , Rosa/microbiologia , Humanos , Infecções , Nanoestruturas
13.
Ecotoxicol Environ Saf ; 175: 58-65, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30889400

RESUMO

Amaranthus mangostanus L. (amaranth) was hydroponically grown in different concentrations of biochar amended nutrient solution to investigate the mineral elements migration and physiological response of amaranth as affected by biochar. Our results showed that exposure to 26.6 g/L of biochar greatly increased the root and shoot K, Na and Al content, while 2.6 g/L of biochar greatly increased the root Ca and Mg content. The uptake of K and Al notably altered other elements' accumulation in shoots and roots upon the biochar exposure. The ratio of Ca: K in shoots and Mg: K in roots were negatively correlated to the biochar concentrations, while the ratio of Al: Ca and Al: Mg in roots were positively related to the biochar concentrations. The Al: Fe ratio was also polynomial correlated to the concentrations of biochar. The addition of biochar beyond 2.6 g/L resulted in the cell membrane and DNA damages in roots. The activity of SOD and CAT in 6.7 g/L biochar treated roots was significantly elevated as compared to the ones in other biochar treatments and was almost 2-fold of the control. The photosynthetic Fv/Fm intensity and subcellular structure in leaves were also compromised upon exposure to 26.6 g/L biochar. Taken together, biochar could significantly alter the mineral migration in amaranth and physiologically damage in the plants. It is essential to study the effect of biochar within appropriate concentrations on plants prior to wide application in agriculture.


Assuntos
Amaranthus/efeitos dos fármacos , Carvão Vegetal/toxicidade , Minerais/análise , Fotossíntese/efeitos dos fármacos , Amaranthus/química , Transporte Biológico , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos
14.
Ecotoxicol Environ Saf ; 169: 848-855, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597784

RESUMO

Dissolved humic acid (DHA) from soil can interact with multi-walled carbon nanotubes (MWCNTs) and magnetic-modified multi-walled carbon nanotubes (MMWCNTs), and subsequently alter the toxicity of MWCNTs and MMWCNTs to amaranth. This is the first study to compare the effects of MWCNTs and MMWCNTs under natural DHAs on their toxicity to amaranth. When DHAs were combined with 0.5 g/L MWCNTs, 1:2:1 MMWCNTs and 4:2:1 MMWCNTs nanomaterials, DHA1 and DHA4 both increased the pH of Hoagland's solutions. DHA1 more severely decreased the soluble protein levels in shoots than DHA4 in the 1:2:1 MMWCNT and 4:2:1 MMWCNT treatments. DHA1 and DHA4 both increased the chlorophyll concentrations of amaranth treated with MWCNTs, decreased the chlorophyll concentrations in the MMWCNT treatments. Co-exposure of DHAs and carbon-based CNTs caused further decreases in the anthocyanin level as compared to the respective CNT alone treatment. In the nanomaterial alone treatment, both 0.25 and 4:2:1 MMWCNTs greatly lowered the anthocyanin level as compared to the other two CNTs with the same exposure dose. Transmission electron microscopy images showed that the interaction between 4:2:1 MMWCNT and DHA4 had more serious effects on plant cells across all the treatments.


Assuntos
Amaranthus/efeitos dos fármacos , Amaranthus/metabolismo , Substâncias Húmicas/análise , Nanopartículas de Magnetita/toxicidade , Nanotubos de Carbono/toxicidade , Poluentes do Solo/toxicidade , Amaranthus/crescimento & desenvolvimento , Microscopia Eletrônica de Transmissão
15.
J Environ Manage ; 241: 319-327, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31015082

RESUMO

Engineered nanoparticles (NPs) are now used as additives in pesticides and fungicides and as novel fertilizers in agriculture so there is an urgent need to explore their effects on crop yield and quality in a full life cycle study. In the present study, three widely used NPs (TiO2, Fe2O3 and CuO NPs applied at doses of 50 and 500 mg/kg) were selected to investigate their long-term impact on wheat growth. TiO2 NPs did not affect the growth and development of wheat, but Fe2O3 NPs promoted wheat precocity and CuO NPs inhibited the growth and development of the wheat grains. The Cu content in grains treated with CuO NP increased by 18.84%-30.45% compared with the control. However, the contents of Fe and Zn were both significantly lower in the CuO NP treatments. Univariate and multivariate analyses were used to analyze the effect of different NPs on the composition of amino acids in wheat grains. Exposure to TiO2 NPs at dose of 500 mg/kg increased the overall amino acid nutrition in the edible portion of wheat. Fe2O3 NPs at both doses increased the contents of cysteine (Cys) and tyrosine (Tyr). The addition of CuO NPs reduced the level of some essential amino acids in wheat grains, isoleucine (Ile), leucine (Leu), threonine (Thr) and histidine (His). Overall, evaluation of the potential impacts of metal-based NPs on the nutritional quality of wheat grains could provide important information for their safe use when incorporated into agrichemicals in sustainable agriculture.


Assuntos
Nanopartículas Metálicas , Triticum , Aminoácidos , Cobre , Metais , Óxidos
16.
Angew Chem Int Ed Engl ; 58(2): 467-471, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30417515

RESUMO

The practical application of layered black phosphorus (LBP) is compromised by fast decomposition in the presence of H2 O and/or O2 . The role of H2 O is controversial. Herein, we propose a hydroxide ion (OH- )-initiated degradation mechanism for LBP to elucidate the role of H2 O. We found that LBP degraded faster in alkaline solutions than in neutral or acidic solutions with or without O2 . Degradation rates of LBP increased linearly from pH 4 to 10. Density functional theory (DFT) calculations showed that OH- initiated the decomposition of LBP through breaking the P-P bond and forming a P-O bond. The detection of hypophosphite, generated from OH- reacting with P atoms, confirmed the hypothesis. Protons acted in a way distinctive from OH- , by inducing deposition/aggregation or forming a cation-π layer to protect LBP from degradation. This work reveals the degradation mechanism of LBP and thus facilitates the development of effective stabilization technologies.

17.
Small ; 13(32)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28696584

RESUMO

A systematic cytotoxicity study of layered black phosphorus (BP) is urgently needed before moving forward to its potential biomedical applications. Herein, bulk BP crystals are synthesized and exfoliated into layered BP with different lateral size and thickness. The cytotoxicity of as-exfoliated layered BP is evaluated by a label-free real-time cell analysis technique, displaying a concentration-, size-, and cell type-dependent response. The IC50 values can vary by 40 and 30 times among the BP sizes and cell types, respectively. BP-1 with the largest lateral size and thickness has the highest cytotoxicity; whereas the smallest BP-3 only shows moderate toxicity. The sensitivity of three tested cell lines follows the sequence of 293T > NIH 3T3 > HCoEpiC. Two possible mechanisms for BP to induce cytotoxicity are proposed and verified: (1) the generation of intracellular reactive oxygen species (ROS) is detected by a ROS sensitive probe using the inverted fluorescence microscopy and flow cytometry; (2) the interaction of layered BP and model cell membrane is examined by quartz crystal microbalance with dissipation, illustrating the disruption of cell membrane integrity especially by the largest BP-1. This systematic study of BP's cytotoxicity will shed light on its future biomedical and environmental applications.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Fósforo/farmacologia , Animais , Citometria de Fluxo , Células HEK293 , Humanos , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Fósforo/química
18.
Environ Sci Technol ; 51(23): 13659-13667, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29120628

RESUMO

Cation-pi attraction is a major force that determines macromolecular structures and drug-receptor interactions. However, the role of the cation-pi interaction in sorption of fluoroquinolone antibiotics by pyrogenic carbonaceous materials (PCMs) has not been addressed. We studied sorption of ciprofloxacin (CIP) on graphite to quantify the contribution of the cation-pi interaction. Through competition experiments, the decreased amount of sorbed CIP by sequential treatment with hexadecane, phenanthrene and benzylamine represents the contribution of hydrophobic, pi-pi and cation-pi interactions, respectively. Benzylamine competed more strongly with CIP than n-hexadecane and phenanthrene, indicating that cation-pi is a major force. Cation-pi interactions accounted for up to 72.6% of the total sorption at an initial CIP concentration of 0.000015 mmol/L. Importantly, species transformation (CIP(0) captures H+ from water to form CIP(+1)) induced by cation-pi interactions was verified both experimentally and theoretically and can be used to explain the environmental behavior of other fluoroquinolone antibiotics and biochemical processes of amino acids that interact with aromatic moieties. Because of the significant role of cation-pi interactions, CIP desorption increased up to 2.32 times when Na+ increased from 0.01 mM to 0.45 mM, which is an environmentally relevant scenario at river estuaries. Hence, behaviors of fluoroquinolone antibiotics that are affected by ionic strength changes need to be carefully evaluated, especially in river estuaries.


Assuntos
Antibacterianos , Fluoroquinolonas , Adsorção , Carbono , Cátions , Ciprofloxacina , Purificação da Água
19.
Environ Sci Technol ; 49(12): 7109-22, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25974388

RESUMO

The potential risks from metal-based nanoparticles (NPs) in the environment have increased with the rapidly rising demand for and use of nanoenabled consumer products. Plant's central roles in ecosystem function and food chain integrity ensure intimate contact with water and soil systems, both of which are considered sinks for NPs accumulation. In this review, we document phytotoxicity caused by metal-based NPs exposure at physiological, biochemical, and molecular levels. Although the exact mechanisms of plant defense against nanotoxicity are unclear, several relevant studies have been recently published. Possible detoxification pathways that might enable plant resistance to oxidative stress and facilitate NPs detoxification are reviewed herein. Given the importance of understanding the effects and implications of metal-based NPs on plants, future research should focus on the following: (1) addressing key knowledge gaps in understanding molecular and biochemical responses of plants to NPs stress through global transcriptome, proteome, and metablome assays; (2) designing long-term experiments under field conditions at realistic exposure concentrations to investigate the impact of metal-based NPs on edible crops and the resulting implications to the food chain and to human health; and (3) establishing an impact assessment to evaluate the effects of metal-based NPs on plants with regard to ecosystem structure and function.


Assuntos
Inativação Metabólica/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Plantas/metabolismo , Cadeia Alimentar , Estresse Oxidativo/efeitos dos fármacos , Plantas/efeitos dos fármacos , Fatores de Risco
20.
Environ Sci Technol ; 49(16): 10117-26, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26186015

RESUMO

Silver nanoparticles (Ag NPs) are widely used in consumer products, and their release has raised serious concerns about the risk of their exposure to the environment and to human health. However, biochemical mechanisms by which plants counteract NP toxicity are largely unknown. We have previously engineered Crambe abyssinica plants expressing the bacterial γ-glutamylecysteine synthase (γ-ECS) for enhancing glutathione (GSH) levels. In this study, we investigated if enhanced levels of GSH and its derivatives can protect plants from Ag NPs and AgNO3 (Ag(+) ions). Our results showed that transgenic lines, when exposed to Ag NPs and Ag(+) ions, were significantly more tolerant, attaining a 28%-46% higher biomass and 34-49% more chlorophyll content, as well as maintaining 35-46% higher transpiration rates as compared to those of wild type (WT) plants. Transgenic γ-ECS lines showed 2-6-fold Ag accumulation in shoot tissue and slightly lower or no difference in root tissue relative to levels in WT plants. The levels of malondialdehyde (MDA) in γ-ECS lines were also 27.3-32.5% lower than those in WT Crambe. These results indicate that GSH and related peptides protect plants from Ag nanotoxicity. To our knowledge, this is the first direct report of Ag NP detoxification by GSH in transgenic plants, and these results will be highly useful in developing strategies to counteract the phytotoxicty of metal-based nanoparticles in crop plants.


Assuntos
Crambe (Planta)/efeitos dos fármacos , Dipeptídeos/metabolismo , Escherichia coli/enzimologia , Glutationa/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Biomassa , Clorofila/metabolismo , Crambe (Planta)/crescimento & desenvolvimento , Cisteína/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA