Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(3): 552-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263463

RESUMO

The steady flow of lactic acid (LA) from tumor cells to the extracellular space via the monocarboxylate transporter symport system suppresses antitumor T cell immunity. However, LA is a natural energy metabolite that can be oxidized in the mitochondria and could potentially stimulate T cells. Here we show that the lactate-lowering mood stabilizer lithium carbonate (LC) can inhibit LA-mediated CD8+ T cell immunosuppression. Cytoplasmic LA increased the pumping of protons into lysosomes. LC interfered with vacuolar ATPase to block lysosomal acidification and rescue lysosomal diacylglycerol-PKCθ signaling to facilitate monocarboxylate transporter 1 localization to mitochondrial membranes, thus transporting LA into the mitochondria as an energy source for CD8+ T cells. These findings indicate that targeting LA metabolism using LC could support cancer immunotherapy.


Assuntos
Antimaníacos , Ácido Láctico , Carbonato de Lítio , Mitocôndrias , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Ácido Láctico/metabolismo , Carbonato de Lítio/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Antimaníacos/farmacologia
2.
Nat Immunol ; 24(1): 162-173, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36471170

RESUMO

Amino acid metabolism is essential for cell survival, while the byproduct ammonia is toxic and can injure cellular longevity. Here we show that CD8+ memory T (TM) cells mobilize the carbamoyl phosphate (CP) metabolic pathway to clear ammonia, thus promoting memory development. CD8+ TM cells use ß-hydroxybutyrylation to upregulate CP synthetase 1 and trigger the CP metabolic cascade to form arginine in the cytosol. This cytosolic arginine is then translocated into the mitochondria where it is split by arginase 2 to urea and ornithine. Cytosolic arginine is also converted to nitric oxide and citrulline by nitric oxide synthases. Thus, both the urea and citrulline cycles are employed by CD8+ T cells to clear ammonia and enable memory development. This ammonia clearance machinery might be targeted to improve T cell-based cancer immunotherapies.


Assuntos
Amônia , Citrulina , Citrulina/metabolismo , Amônia/metabolismo , Ureia/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Óxido Nítrico , Arginina/metabolismo , Arginase/metabolismo
3.
Nat Immunol ; 24(12): 2042-2052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919525

RESUMO

Tumor-derived factors are thought to regulate thrombocytosis and erythrocytopenia in individuals with cancer; however, such factors have not yet been identified. Here we show that tumor cell-released kynurenine (Kyn) biases megakaryocytic-erythroid progenitor cell (MEP) differentiation into megakaryocytes in individuals with cancer by activating the aryl hydrocarbon receptor-Runt-related transcription factor 1 (AhR-RUNX1) axis. During tumor growth, large amounts of Kyn from tumor cells are released into the periphery, where they are taken up by MEPs via the transporter SLC7A8. In the cytosol, Kyn binds to and activates AhR, leading to its translocation into the nucleus where AhR transactivates RUNX1, thus regulating MEP differentiation into megakaryocytes. In addition, activated AhR upregulates SLC7A8 in MEPs to induce positive feedback. Importantly, Kyn-AhR-RUNX1-regulated MEP differentiation was demonstrated in both humanized mice and individuals with cancer, providing potential strategies for the prevention of thrombocytosis and erythrocytopenia.


Assuntos
Neoplasias , Trombocitose , Animais , Camundongos , Cinurenina/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Megacariócitos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Precursoras Eritroides/metabolismo , Diferenciação Celular/fisiologia , Neoplasias/metabolismo , Trombocitose/metabolismo , Viés
4.
Nat Immunol ; 22(3): 358-369, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432230

RESUMO

CD8+ T cell exhaustion dampens antitumor immunity. Although several transcription factors have been identified that regulate T cell exhaustion, the molecular mechanisms by which CD8+ T cells are triggered to enter an exhausted state remain unclear. Here, we show that interleukin-2 (IL-2) acts as an environmental cue to induce CD8+ T cell exhaustion within tumor microenvironments. We find that a continuously high level of IL-2 leads to the persistent activation of STAT5 in CD8+ T cells, which in turn induces strong expression of tryptophan hydroxylase 1, thus catalyzing the conversion to tryptophan to 5-hydroxytryptophan (5-HTP). 5-HTP subsequently activates AhR nuclear translocation, causing a coordinated upregulation of inhibitory receptors and downregulation of cytokine and effector-molecule production, thereby rendering T cells dysfunctional in the tumor microenvironment. This molecular pathway is not only present in mouse tumor models but is also observed in people with cancer, identifying IL-2 as a novel inducer of T cell exhaustion.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Interleucina-2/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Neoplasias/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Microambiente Tumoral , 5-Hidroxitriptofano/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Interleucina-2/antagonistas & inibidores , Interleucina-2/genética , Células Jurkat , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células MCF-7 , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Triptofano Hidroxilase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cell ; 82(16): 3077-3088.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35738262

RESUMO

Glycolysis facilitates the rapid recall response of CD8+ memory T (Tm) cells. However, it remains unclear whether Tm cells uptake exogenous glucose or mobilize endogenous sugar to fuel glycolysis. Here, we show that intracellular glycogen rather than extracellular glucose acts as the major carbon source for the early recall response. Following antigenic stimulation, Tm cells exhibit high glycogen phosphorylase (brain form, PYGB) activity, leading to glycogenolysis and release of glucose-6-phosphate (G6P). Elevated G6P mainly flows to glycolysis but is also partially channeled to the pentose phosphate pathway, which maintains the antioxidant capacity necessary for later recall stages. Mechanistically, TCR signaling directly induces phosphorylation of PYGB by LCK-ZAP70. Functionally, the glycogenolysis-fueled early recall response of CD8+ Tm cells accelerates the clearance of OVA-Listeria monocytogenes in an infected mouse model. Thus, we uncover a specific dependency on glycogen for the initial activation of memory T cells, which may have therapeutic implications for adaptive immunity.


Assuntos
Glicogenólise , Animais , Linfócitos T CD8-Positivos , Glucose/metabolismo , Glicogênio/metabolismo , Células T de Memória , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(11): e2317658121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437537

RESUMO

Identification of mechanisms that program early effector T cells to either terminal effector T (Teff) or memory T (Tm) cells has important implications for protective immunity against infections and cancers. Here, we show that the cytosolic transcription factor aryl hydrocarbon receptor (AhR) is used by early Teff cells to program memory fate. Upon antigen engagement, AhR is rapidly up-regulated via reactive oxygen species signaling in early CD8+ Teff cells, which does not affect the effector response, but is required for memory formation. Mechanistically, activated CD8+ T cells up-regulate HIF-1α to compete with AhR for HIF-1ß, leading to the loss of AhR activity in HIF-1αhigh short-lived effector cells, but sustained in HIF-1αlow memory precursor effector cells (MPECs) with the help of autocrine IL-2. AhR then licenses CD8+ MPECs in a quiescent state for memory formation. These findings partially resolve the long-standing issue of how Teff cells are regulated to differentiate into memory cells.


Assuntos
Linfócitos T CD8-Positivos , Divisão Celular , Citosol , Espécies Reativas de Oxigênio
8.
EMBO J ; 40(2): e106123, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33274785

RESUMO

Identifying and sorting highly tumorigenic and metastatic tumor cells from a heterogeneous cell population is a daunting challenge. Here, we show that microfluidic devices can be used to sort marker-based heterogeneous cancer stem cells (CSC) into mechanically stiff and soft subpopulations. The isolated soft tumor cells (< 400 Pa) but not the stiff ones (> 700 Pa) can form a tumor in immunocompetent mice with 100 cells per inoculation. Notably, only the soft, but not the stiff cells, isolated from CD133+ , ALDH+ , or side population CSCs, are able to form a tumor with only 100 cells in NOD-SCID or immunocompetent mice. The Wnt signaling protein BCL9L is upregulated in soft tumor cells and regulates their stemness and tumorigenicity. Clinically, BCL9L expression is correlated with a worse prognosis. Our findings suggest that the intrinsic softness is a unique marker of highly tumorigenic and metastatic tumor cells.


Assuntos
Carcinogênese/genética , Células-Tronco Neoplásicas/fisiologia , Antígeno AC133/genética , Aldeído Desidrogenase/genética , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Regulação para Cima/genética , Proteínas Wnt/genética
9.
Mol Med ; 30(1): 88, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879491

RESUMO

BACKGROUND: Macrophages play a crucial role in the development of cardiac fibrosis (CF). Although our previous studies have shown that glycogen metabolism plays an important role in macrophage inflammatory phenotype, the role and mechanism of modifying macrophage phenotype by regulating glycogen metabolism and thereby improving CF have not been reported. METHODS: Here, we took glycogen synthetase kinase 3ß (GSK3ß) as the target and used its inhibitor NaW to enhance macrophage glycogen metabolism, transform M2 phenotype into anti-fibrotic M1 phenotype, inhibit fibroblast activation into myofibroblasts, and ultimately achieve the purpose of CF treatment. RESULTS: NaW increases the pH of macrophage lysosome through transmembrane protein 175 (TMEM175) and caused the release of Ca2+ through the lysosomal Ca2+ channel mucolipin-2 (Mcoln2). At the same time, the released Ca2+ activates TFEB, which promotes glucose uptake by M2 and further enhances glycogen metabolism. NaW transforms the M2 phenotype into the anti-fibrotic M1 phenotype, inhibits fibroblasts from activating myofibroblasts, and ultimately achieves the purpose of treating CF. CONCLUSION: Our data indicate the possibility of modifying macrophage phenotype by regulating macrophage glycogen metabolism, suggesting a potential macrophage-based immunotherapy against CF.


Assuntos
Fibrose , Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Camundongos , Glicogênio Sintase Quinase 3 beta/metabolismo , Miofibroblastos/metabolismo , Glicogênio/metabolismo , Cálcio/metabolismo , Lisossomos/metabolismo , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Masculino , Camundongos Endogâmicos C57BL
10.
J Sci Food Agric ; 104(10): 6342-6349, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415792

RESUMO

BACKGROUND: Dioscorea opposita Thunb. cv. Tiegun maturity (DM) is an important factor influencing its quality. However, there are few studies on the impact of harvest time on its maturation. In the present study, a NMR-based metabolomics approach was applied to investigate the dynamic metabolic changes of D. opposita Thunb. cv. Tiegun at six different harvest stages: stage 1 (S1), stage 2 (S2), Stage 3 (S3), stage 4 (S4), stage 5 (S5) and stage 6 (S6). RESULTS: Principal component analysis showed distinct segregation of samples obtained from S1, S2 and S3 compared to those derived from S4, S5 and S6. Interestingly, these samples from the two periods were obtained before and after frost, indicating that frost descent might be important for DM. Eight differential metabolites responsible for good separation of different groups were identified by the principal component analysis loading plot and partial least squares-discriminant analysis. In addition, quantitative analysis of these metabolites using liquid chromatography-tandem mass spectrometry determined the effects of harvest time on these metabolite contents, two of which, sucrose and allantoin, were considered as potential biomarkers to determine DM. CONCLUSION: The present study demonstrated that NMR-based metabolomics approach could serve as a powerful tool to identify differential metabolites during harvesting processes, also offering a fresh insight into understanding the DM and the potential mechanism of quality formation. © 2024 Society of Chemical Industry.


Assuntos
Dioscorea , Espectroscopia de Ressonância Magnética , Metabolômica , Espectrometria de Massas em Tandem , Dioscorea/química , Dioscorea/metabolismo , Dioscorea/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética/métodos , Frutas/química , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Alantoína/metabolismo , Alantoína/análise , Fatores de Tempo , Sacarose/metabolismo , Sacarose/análise , Cromatografia Líquida/métodos , Análise de Componente Principal , Cromatografia Líquida de Alta Pressão , Espectrometria de Massa com Cromatografia Líquida
11.
Neurobiol Dis ; 177: 105988, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603746

RESUMO

CXC chemokine receptor 2 (CXCR2) plays an important role in demyelinating diseases, but the detailed mechanisms were not yet clarified. In the present study, we mainly investigated the critical function and the potential molecular mechanisms of CXCR2 on oligodendrocyte precursor cell (OPC) differentiation and remyelination. The present study demonstrated that inhibiting CXCR2 significantly enhanced OPC differentiation and remyelination in primary cultured OPCs and ethidium bromide (EB)-intoxicated rats by facilitating the formation of myelin proteins, including PDGFRα, MBP, MAG, MOG, and Caspr. Further investigation identified phosphodiesterase 10A (PDE10A) as a main downstream protein of CXCR2, interacting with the receptor to regulate OPC differentiation, in that inhibition of CXCR2 reduced PDE10A expression while suppression of PDE10A did not affect CXCR2. Furthermore, inhibition of PDE10A promoted OPC differentiation, whereas overexpression of PDE10A down-regulated OPC differentiation. Our data also revealed that inhibition of CXCR2/PDE10A activated the cAMP/ERK1/2 signaling pathway, and up-regulated the expression of key transcription factors, including SOX10, OLIG2, MYRF, and ZFP24, that ultimately promoted remyelination and myelin protein biosynthesis. In conclusion, our findings suggested that inhibition of CXCR2 promoted OPC differentiation and enhanced remyelination by regulating PDE10A/cAMP/ERK1/2 signaling pathway. The present data also highlighted that CXCR2 may serve as a potential target for the treatment of demyelination diseases.


Assuntos
Doenças Desmielinizantes , Remielinização , Ratos , Animais , Camundongos , Remielinização/fisiologia , Receptores de Interleucina-8B/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais , Diferenciação Celular/fisiologia , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo
12.
Environ Res ; 223: 115471, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773644

RESUMO

The overuse of antibiotics has caused problems such as environmental pollution, increased antibiotic resistance of pathogenic bacteria, and inhibition of engineered microbial processes such as anaerobic digestion (AD). At present, mitigating the inhibition of antibiotics on the process of microbial recycling of organic matter by using additives has always been a research hotspot. In this study, the effects of the addition of three iron-based particles including zero-valent iron (ZVI), Fe2O3 and Fe3O4 on the biogas yield during the AD of cow manure containing florfenicol (FLO) were studied. It was found that by alleviating the acid accumulation, the addition of low-concentration ZVI, Fe2O3 and high-concentration Fe3O4 enhanced the maximum methane production rate of FLO-containing cow manure during AD to 3.5, 1.7 and 3.6 times, respectively, while high concentration of ZVI will lead to the crash of the AD system due to the rise of pH. Within the concentration range of iron-based particles dosed in this study, the Fe3O4 dosage showed a significant positive correlation with the cumulative methane production enhancement rate (p < 0.01). The sum of the relative abundances of Limnobacter and Pseudomonas was correlated with the absolute abundance of floR gene with the Pearson correlation coefficient of 0.9457 (p < 0.01), indicating the possibility of these two genera being the potential host bacteria for floR gene.


Assuntos
Ferro , Esterco , Animais , Bovinos , Anaerobiose , Antibacterianos/farmacologia , Biocombustíveis , Metano , Reatores Biológicos
13.
Environ Res ; 236(Pt 2): 116822, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541415

RESUMO

The new anaerobic/oxic/anoxic-aerobic granular sludge (AOA-AGS) merits the advantages of effective carbon utilization and low-carbon treatment. However, low temperature poses stressing concerns and the resisting mechanism remains much unknown. Herein, an AOA-AGS process was configured for simultaneous nitrification, denitrification and phosphorus removal (SNDPR) with low-strength wastewater from ambient (>15 °C) to winter temperatures (<15 °C). Results showed that simultaneously advanced nutrients removal, and dramatic in situ sludge reduction (Yobs of 0.093 g MLSS/g COD) were gained regardless of seasonally decreasing temperatures. Winter temperatures even amplified Candidatus Competibacter predominating from 20.11% to 34.74%, which laid the core basis for endogenous denitrification, sludge minimization and temperature resistance. A removal model was thus proposed given the observed functional groups, and doubts were also raised for future investigations. This study would aid a better understanding on the microbial ecology and engineering aspects of the new AOA-AGS process treating low-strength wastewater at low temperatures.

14.
Environ Res ; 233: 116387, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302743

RESUMO

Medium chain fatty acids (MCFA) generation is attracting growing interest due to fossil fuel depletion. To promote the production of MCFA, especially caproate, hydrochloric acid pretreated activated carbon (AC) was introduced into chain elongation fermentation. In this study, the role of pretreated AC on caproate production was investigated using lactate and butyrate as electron donor and electron acceptor, respectively. The results showed that AC did not improve the chain elongation reaction at beginning but promoted the caproate production at later stage. The addition of 15 g/L AC facilitated reactor reaching the peak of caproate concentration (78.92 mM), caproate electron efficiency (63.13%), and butyrate utilization rate (51.88%). The adsorption experiment revealed a positive correlation between the adsorption capacity of pretreated AC and the concentration as well as the carbon chain length of carboxylic acids. Moreover, the adsorption of undissociated caproate by pretreated AC contributed to a mitigated toxicity towards microorganisms, thereby facilitating the production of MCFA. Microbial community analysis revealed an increasing enrichment of key functional chain elongation bacteria, including Eubacterium, Megasphaera, Caproiciproducens, and Pseudoramibacter, but a suppression on acrylate pathway microorganism Veillonella, as the dosage of pretreated AC increasing. The findings of this study demonstrated the substantial impact of the adsorption effect of acid-pretreated AC on promoting caproate production, which would aid to the development of more efficient caproate production process.


Assuntos
Caproatos , Ácido Clorídrico , Carvão Vegetal , Ácido Láctico , Adsorção , Ácidos Graxos , Fermentação , Butiratos , Reatores Biológicos
15.
J Environ Manage ; 348: 119286, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37857216

RESUMO

Medium chain fatty acids (MCFAs), the secondary products of traditional anaerobic fermentation, can be produced via chain elongation (CE), a process often retarded due to the difficulty during interspecies electron transfer (IET). This study employed redox mediators, neutral red (NR), methyl viologen (MV), and methylene blue (MB) as electron shuttles to expedite the electro-fermentation for caproate production by improving IET. Results showed that MV increased the MCFAs production by promoting acetate to ethanol conversion, leading to the highest MCFAs selectivity of 68.73%. While NR was indicated to improve CE by encouraging H2 production, and the biocathode had the highest electrical activity due to the smallest internal resistance and largest capacitance increase of 96% than the control. A higher proportion of Sutterella, Prevotella, and Hydrogenophaga, linked with the H2 mediated interspecies electron transfer (MIET) during CE process, was observed across redox mediators supplied groups compared to the control. The presence of mediators led to an elevated abundance of key enzymes for enhanced CE process and electron transfer. This study provided the perspective of the stimulated electron transfer for improved MCFAs production in electro-fermentation systems.


Assuntos
Caproatos , Ácidos Graxos , Fermentação , Oxirredução
16.
Biochemistry ; 61(4): 265-275, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104101

RESUMO

The G-quadruplex is a noncanonical fold of DNA commonly found at telomeres and within gene promoter regions of the genome. These guanine-rich sequences are highly susceptible to damages such as base oxidation and depurination, leading to abasic sites. In the present work, we address whether a vacancy, such as an abasic site, in a G-quadruplex serves as a specific ligand recognition site. When the G-tetrad is all guanines, the vacant (abasic) site is recognized and bound by free guanine nucleobase. However, we aim to understand whether the preference for a specific ligand recognition changes with the presence of a guanine oxidation product 8-oxo-7,8-dihydroguanine (OG) adjacent to the vacancy in the tetrad. Using molecular dynamics simulation, circular dichroism, and nuclear magnetic resonance, we examined the ability for riboflavin to stabilize abasic site-containing G-quadruplex structures. Through structural and free energy binding analysis, we observe riboflavin's ability to stabilize an abasic site-containing G-quadruplex only in the presence of an adjacent OG-modified base. Further, when compared to simulation with the vacancy filled by free guanine, we observe that the free guanine nucleobase is pushed outside of the tetrad by OG to interact with other parts of the structure, including loop residues. These results support the preference of riboflavin over free guanine to fill an OG-adjacent G-quadruplex abasic vacancy.


Assuntos
DNA/química , Quadruplex G , Guanina/química , Riboflavina/química , Dicroísmo Circular/métodos , Guanina/análogos & derivados , Humanos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Oxirredução , Regiões Promotoras Genéticas , Telômero/química
17.
Glob Chang Biol ; 28(21): 6404-6418, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35971257

RESUMO

Soil moisture (SM) is essential to microbial nitrogen (N)-cycling networks in terrestrial ecosystems. Studies have found that SM-atmosphere feedbacks dominate the changes in land carbon fluxes. However, the influence of SM-atmosphere feedbacks on the N fluxes changes, and the underlying mechanisms remain highly unsure, leading to uncertainties in climate projections. To fill this gap, we used in situ observation coupled with gridded and remote sensing data to analyze N2 O fluxes emissions globally. Here, we investigated the synergistic effects of temperature, hydroclimate on global N2 O fluxes, as the result of SM-atmosphere feedback impact on N fluxes. We found that SM-temperature feedback dominates land N2 O emissions by controlling the balance between nitrifier and denitrifier genes. The mechanism is that atmospheric water demand increases with temperature and thereby reduces SM, which increases the dominant N2 O production nitrifier (containing amoA AOB gene) and decreases the N2 O consumption denitrifier (containing the nosZ gene), consequently will potential increasing N2 O emissions. However, we find that the spatial variations of soil-water availability as a result of the nonlinear response of SM to vapor pressure deficit caused by temperature are some of the greatest challenges in predicting future N2 O emissions. Our data-driven assessment deepens the understanding of the impact of SM-atmosphere interactions on the soil N cycle, which remains uncertain in earth system models. We suggest that the model needs to account for feedback between SM and atmospheric temperature when estimating the response of the N2 O emissions to climatic change globally, as well as when conducting field-scale investigations of the response of the ecosystem to warming.


Assuntos
Nitrificação , Solo , Atmosfera , Carbono , Desnitrificação , Ecossistema , Retroalimentação , Nitrogênio , Óxido Nitroso/análise , Água
18.
Proteome Sci ; 20(1): 16, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153524

RESUMO

BACKGROUND: Hypoxia is a risk factor for non-alcoholic fatty liver diseases, leading to permanent imbalance of liver lipid homeostasis and steatohepatitis. However, a detailed understanding of the metabolic genes and pathways involved remains elusive. METHODS: In vivo experiments were designed to analyze body weight and lipid metabolism changes of rats under hypoxia. After this, we combined microarray analysis and gene overexpression experiments to validate the core mechanisms involved in the response to hypoxia. RESULTS: The hypobaric hypoxia treated rats exhibited significantly increased serum triglycerides (TG) (p < 0.05), despite no significant changes in serum alanine aminotransferase (ALT) and blood glucose (BG) were observed. In addition, serum high-density lipoprotein cholesterol (HDL-C) greatly increased after 3 days and then returned to normal level at 30 days. Interestingly, serum low-density lipoprotein cholesterol (LDL-C) showed an opposite pattern. Transcriptome analysis, qRT-PCR, ICC revealed that the genes PPARA, ANGPTL4, CPT-I, ACC and LPL play a crucial role in response to hypobaric hypoxia. IPA pathway analysis further confirmed that PPARA-mediated regulation of ANGPTL4 participated in TG clearance and lipoprotein metabolism. Finally, the PPARA-ANGPTL4 pathway was validated in rats and HL 7702 cells treated with Fenofibrate, a PPARA specific agonist. CONCLUSIONS: Our study showed this pathway plays an important role on lipid metabolism caused by hypobaric hypoxia and the potential target genes associated with oxygen-dependent lipid homeostasis in the liver.

19.
Pharmacol Res ; 177: 106085, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033646

RESUMO

Cardiovascular disease (CVD)-related mortality and morbidity are among the most critical disease burdens worldwide. CVDs encompass many diseases and involve complex pathogenesis and pathological changes. While research on these diseases has advanced significantly, treatments and their efficacy remain rather limited. New therapeutic strategies and targets must, therefore, be explored. Tissue transglutaminase (TG2) is pivotal to the pathological development of CVDs, including participating in the cross-linking of extracellular proteins, activation of fibroblasts, hypertrophy and apoptosis of cardiomyocytes, proliferation and migration of smooth muscle cells (SMCs), and inflammatory reactions. Regulating TG2 activity and expression could ensure remarkable improvements in disorders like heart failure (HF), pulmonary hypertension (PH), hypertension, and coronary atherosclerosis. In this review, we summarize recent advances in TG2: we discuss its role and mechanisms in the progression of various CVDs and its potential as a diagnostic and therapeutic target.


Assuntos
Doenças Cardiovasculares , Transglutaminases , Apoptose , Doenças Cardiovasculares/tratamento farmacológico , Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/metabolismo
20.
Bioorg Chem ; 129: 106179, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244322

RESUMO

A series of novel pyranocarbazole alkaloids were designed and synthesized as derivatives of Claulansine F and CZ-7. Some of the compounds showed strong neuroprotective effects and anti-lipid peroxidation capacity. Among these compounds, 10b, introduced leucine at the C-3 position of pyranocarbazole, was the most active in inhibiting the programmed death of SH-SY5Y cells. This compound exhibited stronger free radical scavenging activity than Edaravone. Furthermore, 10b could penetrate the blood-brain barrier (BBB). More importantly, 10b showed a tendency of improvement in learning and memory in the dose range of 10-40 mg/kg. The research on mechanisms indicated that 10b could reduce oxidative stress in the brain of Aß25-35-intoxicated mice, and then improve the cognitive function of Aß25-35-intoxicated mice. Our findings suggest that 10b may be promising for further evaluation as an intervention for Alzheimer's Disease.


Assuntos
Doença de Alzheimer , Antioxidantes , Cognição , Desenho de Fármacos , Fármacos Neuroprotetores , Animais , Humanos , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Cognição/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA