Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(1990): 20221658, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629113

RESUMO

Human-induced biodiversity loss negatively affects ecosystem function, but the interactive effects of biodiversity change across trophic levels remain insufficiently understood. We sampled arboreal spiders and lepidopteran larvae across seasons in 2 years in a subtropical tree diversity experiment, and then disentangled the links between tree diversity and arthropod predator diversity by deconstructing the pathways among multiple components of diversity (taxonomic, phylogenetic and functional) with structural equation models. We found that herbivores were major mediators of plant species richness effects on abundance, species richness, functional and phylogenetic diversity of predators, while phylogenetic, functional and structural diversity of trees were also important mediators of this process. However, the strength and direction differed between functional, structural and phylogenetic diversity effects, indicating different underlying mechanisms for predator community assembly. Abundance and multiple diversity components of predators were consistently affected by tree functional diversity, indicating that the variation in structure and environment caused by plant functional composition might play key roles in predator community assembly. Our study highlights the importance of an integrated approach based on multiple biodiversity components in understanding the consequences of biodiversity loss in multitrophic communities.


Assuntos
Artrópodes , Aranhas , Animais , Humanos , Ecossistema , Filogenia , Biodiversidade , Plantas
2.
J Anim Ecol ; 92(2): 442-453, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507573

RESUMO

Global biodiversity decline and its cascading effects through trophic interactions pose a severe threat to human society. Establishing the impacts of biodiversity decline requires a more thorough understanding of multi-trophic interactions and, more specifically, the effects that loss of diversity in primary producers has on multi-trophic community assembly. Within a synthetic conceptual framework for multi-trophic beta-diversity, we tested a series of hypotheses on neutral and niche-based bottom-up processes in assembling herbivore and carnivore communities in a subtropical forest using linear models, hieratical variance partitioning based on linear mixed-effects models (LMMs) and simulation. We found that the observed taxonomic, phylogenetic and functional beta-diversity of both herbivorous caterpillars and carnivorous spiders were significantly and positively related to tree dissimilarity. Linear models and variance partitioning for LMMs jointly suggested that as a result of bottom-up effects, producer dissimilarities were predominant in structuring consumer dissimilarity, the strength of which highly depended on the trophic dependencies on producers, the diversity facet examined, and data quality. Importantly, linear models for standardized beta-diversities against producer dissimilarities implied a transition between niche-based processes such as environmental filtering and competitive exclusion, which supports the role of bottom-up effect in determining consumer community assembly. These findings enrich our mechanistic understanding of the 'Diversity Begets Diversity' hypothesis and the complexity of higher-trophic community assembly, which is fundamental for sustainable biodiversity conservation and ecosystem management.


Assuntos
Ecossistema , Herbivoria , Humanos , Animais , Filogenia , Biodiversidade , Florestas
3.
Proc Natl Acad Sci U S A ; 116(52): 26674-26681, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843905

RESUMO

Human activities have shaped large-scale distributions of many species, driving both range contractions and expansions. Species differ naturally in range size, with small-range species concentrated in particular geographic areas and potentially deviating ecologically from widespread species. Hence, species' responses to human activities may be influenced by their geographic range sizes, but if and how this happens are poorly understood. Here, we use a comprehensive distribution database and species distribution modeling to examine if and how human activities have affected the extent to which 9,701 vascular plants fill their climatic potential ranges in China. We find that narrow-ranged species have lower range filling and widespread species have higher range filling in the human-dominated southeastern part of China, compared with their counterparts distributed in the less human-influenced northwestern part. Variations in range filling across species and space are strongly associated with indicators of human activities (human population density, human footprint, and proportion of cropland) even after controlling for alternative drivers. Importantly, narrow-ranged and widespread species show negative and positive range-filling relationships to these human indicators, respectively. Our results illustrate that floras risk biotic homogenization as a consequence of anthropogenic activities, with narrow-ranged species becoming replaced by widespread species. Because narrow-ranged species are more numerous than widespread species in nature, negative impacts of human activities will be prevalent. Our findings highlight the importance of establishing more protected areas and zones of reduced human activities to safeguard the rich flora of China.

4.
Environ Monit Assess ; 190(7): 405, 2018 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-29907889

RESUMO

Risk of gene flow from canola (Brassica napus) to species of wild relatives was used as an example to evaluate the risk of gene flow of transgenic crops. B. juncea and B. rapa were the most common weedy Brassica species in China, which were both sexually compatible with canola. Data on canola cultivation in China were collected and analyzed using geographic information system (GIS), and the distribution of its wild relatives was predicted by MaxEnt species distribution model. Based on biological and phenological evidence, our results showed that gene flow risk exists in most parts of the country, especially in places with higher richness of wild Brassica species. However, risk in dominant canola cultivation regions is relatively low owing to the reduced distribution density of wild species in these regions. Three regions of higher risk of gene flow had been identified. Risk of gene flow is relatively high in certain areas. China has been assumed to be the original center of B. juncea and B. rapa, and gene flow may lead to negative effects on the conservation of biodiversity of local species. Strategies had been proposed to reduce the possibility of gene flow either by monitoring introgression from crops to wild relatives in the areas of high adoption of the crop or by taking measures to limit the releasing of new crops or varieties in the areas with abundant wild relatives.


Assuntos
Brassica napus/genética , Fluxo Gênico , Sistemas de Informação Geográfica , Brassica , China , Produtos Agrícolas/genética , Monitoramento Ambiental , Hibridização Genética , Plantas Geneticamente Modificadas/genética , Risco
5.
New Phytol ; 213(4): 1874-1885, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28164340

RESUMO

Elucidating interactions of above-ground and below-ground communities in different habitat types is essential for understanding biodiversity maintenance and ecosystem functioning. Using 454 pyrosequencing of ITS2 sequences we examined the relationship between subtropical mountain forest soil fungal communities, abiotic conditions, and plant communities using correlation and partial models. Ridge and valley habitats with differing fungal communities were delineated. Total, saprotrophic and pathogenic fungal richness were significantly correlated with plant species richness and/or soil nutrients and moisture in the ridge habitat, but with habitat convexity or basal area of Castanopsis eyrei in the valley habitat. Ectomycorrhizal (EM) fungal richness was significantly correlated with basal area of C. eyrei and total EM plants in the ridge and valley habitats, respectively. Total, saprotrophic, pathogenic and EM fungal compositions were significantly correlated with plant species composition and geographic distance in the ridge habitat, but with various combinations of plant species composition, plant species richness, soil C : N ratio and pH or no variables in the valley habitat. Our findings suggest that mechanisms influencing soil fungal diversity and community composition differ between ridge and valley habitats, and relationships between fungal and woody plant assemblages depend on habitat types in the subtropical forest ecosystem.


Assuntos
Florestas , Fungos/fisiologia , Microbiologia do Solo , Clima Tropical , Madeira/microbiologia , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Componente Principal , Análise de Regressão
6.
Mol Ecol ; 26(9): 2563-2575, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28207957

RESUMO

Elucidating symbiotic relationships between arbuscular mycorrhizal fungi (AMF) and plants contributes to a better understanding of their reciprocally dependent coexistence and community assembly. However, the main drivers of plant and AMF community assembly remain unclear. In this study, we examined AMF communities from 166 root samples of 17 woody plant species from 10 quadrats in a Chinese subtropical forest using 454 pyrosequencing of 18S rRNA gene to describe symbiotic AMF-plant association. Our results show the woody plant-AMF networks to be highly interconnected and nested, but in antimodular and antispecialized manners. The nonrandom pattern in the woody plant-AMF network was explained by plant and AMF phylogenies, with a tendency for a stronger phylogenetic signal by plant than AMF phylogeny. This study suggests that the phylogenetic niche conservatism in woody plants and their AMF symbionts could contribute to interdependent AMF and plant community assembly in this subtropical forest ecosystem.


Assuntos
Florestas , Micorrizas/classificação , Filogenia , Plantas/classificação , Simbiose , Biodiversidade , China , Fungos , Raízes de Plantas/microbiologia , Plantas/microbiologia
7.
Transgenic Res ; 24(3): 537-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25487040

RESUMO

This study aims to investigate the relative plant growth and reproduction of insect-resistant and susceptible plants following the introgression of an insect-resistance Bt-transgene from Brassica napus, oilseed rape, to wild Brassica juncea. The second backcrossed generation (BC2) from a single backcross family was grown in pure and mixed stands of Bt-transgenic and non-transgenic siblings under two insect treatments. Various proportions of Bt-transgenic plants were employed in mixed stands to study the interaction between resistant and susceptible plants. In the pure stands, Bt-transgenic BC2 plants performed better than non-transgenic plants with or without insect treatments. In mixed stands, Bt-transgenic BC2 plants produced fewer seeds than their non-Bt counterparts at low proportions of Bt-transgenic BC2 plants in the absence of insects. Reproductive allocation of non-transgenic plants marginally increased with increasing proportions of Bt-transgenic plants under herbivore pressure, which resulted in increased total biomass and seed production per stand. The results showed that the growth of non-transgenic plants was protected by Bt-transgenic plants under herbivore pressure. The Bt-transgene might not be advantageous in mixed stands of backcrossed hybrids; thus transgene introgression would not be facilitated when herbivorous insects are not present. However, a relatively large initial population of Bt-transgenic plants might result in transgene persistence when target herbivores are present.


Assuntos
Fluxo Gênico , Mostardeira/crescimento & desenvolvimento , Mostardeira/genética , Plantas Geneticamente Modificadas , Brassica napus/genética , Herbivoria , Hibridização Genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Transgenes
8.
Mol Ecol ; 23(5): 996-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24428237

RESUMO

Exploring the relationships between the biodiversity of groups of interacting organisms yields insight into ecosystem stability and function (Hooper et al. ; Wardle ). We demonstrated positive relationships between host plant richness and ectomycorrhizal (EM) fungal diversity both in a field study in subtropical China (Gutianshan) and in a meta-analysis of temperate and tropical studies (Gao et al. ). However, based on re-evaluation of our data sets, Tedersoo et al. () argue that the observed positive correlation between EM fungal richness and EM plant richness at Gutianshan and also in our metastudies was based mainly from (i) a sampling design with inconsistent species pool and (ii) poor data compilation for the meta-analysis. Accordingly, we checked our data sets and repeated the analysis performed by Tedersoo et al. (). In contrast to Tedersoo et al. (), our re-analysis still confirms a positive effect of plant richness on EM fungal diversity in Gutianshan, temperate and tropical ecosystems, respectively.


Assuntos
Biodiversidade , Magnoliopsida/microbiologia , Micorrizas/genética , Microbiologia do Solo
9.
Mol Ecol ; 22(12): 3403-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24624421

RESUMO

Microbial diversity is generally far higher than plant diversity, but the relationship between microbial diversity and plant diversity remains enigmatic. To shed light on this problem, we examined the diversity of a key guild of root-associated microbes,that is, ectomycorrhizal (EM) fungi along a plant diversity gradient in a Chinese subtropical forest. The results indicated that EM fungal diversity was positively correlated with host plant diversity. Furthermore, this relationship was best predicted by host genus-level diversity, rather than species-level diversity or family-level diversity. The generality of this finding was extended beyond our study system through the analyses of 100 additional studies of EM fungal communities from tropical and temperate forests.Here as well, EM fungal lineage composition was significantly affected by EM plant diversity levels, and some EM fungal lineages were co-associated with some host plant genera. These results suggest a general diversity maintenance mechanism for host-specific microbes based on higher order host plant phylogenetic diversity.


Assuntos
Biodiversidade , Magnoliopsida/microbiologia , Micorrizas/genética , Microbiologia do Solo , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Magnoliopsida/classificação , Micorrizas/classificação , Filogenia , Raízes de Plantas/microbiologia , Árvores/microbiologia
10.
Plants (Basel) ; 12(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375866

RESUMO

As a component of the MAP project, the study of the flora in Northeast Asia (comprising Japan, South Korea, North Korea, Northeast China, and Mongolia) convincingly underscores the indispensability of precise and comprehensive diversity data for flora research. Due to variations in the description of flora across different countries in Northeast Asia, it is essential to update our understanding of the region's overall flora using the latest high-quality diversity data. This study employed the most recently published authoritative data from various countries to conduct a statistical analysis of 225 families, 1782 genera, and 10,514 native vascular species and infraspecific taxa in Northeast Asia. Furthermore, species distribution data were incorporated to delineate three gradients in the overall distribution pattern of plant diversity in Northeast Asia. Specifically, Japan (excluding Hokkaido) emerged as the most prolific hotspot for species, followed by the Korean Peninsula and the coastal areas of Northeast China as the second richest hotspots. Conversely, Hokkaido, inland Northeast China, and Mongolia constituted species barren spots. The formation of the diversity gradients is primarily attributed to the effects of latitude and continental gradients, with altitude and topographic factors within the gradients modulating the distribution of species.

11.
Plant Divers ; 45(3): 302-308, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37397597

RESUMO

Myanmar is one of the most biodiverse countries in the Asia-Pacific region due to a wide range of climatic and environmental heterogeneity. Floristic diversity in Myanmar is largely unknown, resulting in a lack of comprehensive conservation plans. We developed a database of higher plants in Myanmar derived from herbarium specimens and literature sources, and analyzed patterns of diversity inventories and collection inconsistencies, aiming to provide a baseline floristic data of Myanmar and act as a guide for future research efforts. We collected 1,329,354 records of 16,218 taxa. Results show that the collection densities at the township level was variable, with 5% of townships having no floristic collections. No ecoregion had an average collection density of greater than 1 specimen/km2 and the lowest collection density was found in the Kayah-Karen Montane Rainforests, which covered 8% of Myanmar's total area. The highest sampling densities were found in Mandalay Region, Chin State, and Yangon Region. Despite floristic collections over the past three centuries, knowledge of the distribution of the vast majority of plant taxa remained limited, particularly for gymnosperms, pteridophytes, and bryophytes. More botanical surveys and further analyses are needed to better describe Myanmar's floristic diversity. An important strategy to promote knowledge of the biodiversity patterns in Myanmar is to improve the collection and digitalization of specimens and to strengthen cooperation among countries.

12.
Plant Divers ; 45(6): 757-758, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38197010

RESUMO

[This corrects the article DOI: 10.1016/j.pld.2023.01.008.].

13.
Sci Adv ; 9(14): eadd8553, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018407

RESUMO

As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.


Assuntos
Magnoliopsida , Humanos , Filogenia , Mudança Climática , Biodiversidade
14.
Insects ; 13(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36555010

RESUMO

Nutritional content of host plants is expected to drive caterpillar species assemblages and their trait composition. These relationships are altered by tree richness-induced neighborhood variation and a seasonal decline in leaf quality. We tested how key functional traits related to the growth and defenses of the average caterpillar hosted by a tree species are shaped by nutritional host quality. We measured morphological traits and estimated plant community-level diet breadth based on occurrences from 1020 caterpillars representing 146 species in a subtropical tree diversity experiment from spring to autumn in one year. We focused on interspecific caterpillar trait variation by analyzing presence-only patterns of caterpillar species for each tree species. Our results show that tree richness positively affected caterpillar species-sharing among tree species, which resulted in lowered trait variation and led to higher caterpillar richness for each tree species. However, community-level diet breadth depended more on the nutritional content of host trees. Higher nutritional quality also supported species-poorer but more abundant communities of smaller and less well-defended caterpillars. This study demonstrates that the leaf nutritional quality of trees shapes caterpillar trait composition across diverse species assemblages at fine spatial scales in a way that can be predicted by ecological theory.

15.
Mycorrhiza ; 21(8): 669-680, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21451998

RESUMO

As the main source of inocula, ectomycorrhizal (ECM) fungal propagules are critical for root colonization and seedling survival in deforested areas. It is essential to know factors that may affect the diversity and composition of ECM fungal community on roots of seedlings planted in deforest areas during reforestation. We quantitatively evaluated the effect of host plant and soil origin on ECM fungal propagule community structure established on roots of Castanopsis fargesii, Lithocarpus harlandii, Pinus armandii, and Pinus massoniana growing in soils from local natural forests and from sites deforested by clear-cut logging in the 1950s and 1960s. ECM root tips were sampled in April, July, and October of 2006, and ECM fungal communities were determined using ECM root morphotyping, internal transcribed spacer (ITS)-RFLP, and ITS sequencing. A total of 36 ECM fungal species were observed in our study, and species richness varied with host species and soil origin. Decreased colonization rates were found in all host species except for L. harlandii, and reduced species richness was found in all host species except for P. armandii in soil from the deforested site, which implied the great changes in ECM fungal community composition. Our results showed that 33.3% variance in ECM fungal community composition could be explained by host plant species and 4.6% by soil origin. Results of indicator species analysis demonstrated that 14 out of 19 common ECM fungal species showed significant preference to host plant species, suggesting that the host preference of ECM fungi was one of the most important mechanisms in structuring ECM fungal community. Accordingly, the host plant species should be taken into account in the reforestation of deforested areas due to the strong and commonly existed host preference of ECM fungi.


Assuntos
Biodiversidade , Fagaceae/microbiologia , Fungos/isolamento & purificação , Especificidade de Hospedeiro , Micorrizas/isolamento & purificação , Pinus/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Fungos/classificação , Fungos/genética , Fungos/fisiologia , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/genética , Micorrizas/fisiologia , Filogenia , Plântula/microbiologia , Solo/química , Árvores/microbiologia
16.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34446433

RESUMO

To achieve the goals of the post-2020 global biodiversity framework, we must identify representative targets that effectively protect biodiversity and can be implemented at a national level. We developed a framework to identify synergies between biodiversity and carbon across the Asian region and proposed a stepwise approach based on scalable priorities at regional, biome, and national levels that can complement potential Convention on Biological Diversity targets of protecting 30% land in the post-2020 global biodiversity framework. Our targets show that 30% of Asian land could effectively protect over 70% of all assessed species relative to only 11% now (based on analysis of 8932 terrestrial vertebrates), in addition to 2.3 to 3.6 hundred billion metric tons of carbon. Funding mechanisms are needed to ensure such targets to support biodiversity-carbon mutually beneficial solutions at the national level while reflecting broader priorities, especially in hyperdiverse countries where priorities exceed 30% of land.

17.
Ecol Evol ; 11(11): 6153-6166, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141209

RESUMO

Herbivorous insects acquire microorganisms from host plants or soil, but it remains unclear how the diversity and functional composition of host plants contribute to structuring herbivore microbiomes. Within a controlled tree diversity setting, we used DNA metabarcoding of 16S rRNA to assess the contribution of Lepidoptera species and their local environment (particularly, tree diversity, host tree species, and leaf traits) to the composition of associated bacterial communities. In total, we obtained 7,909 bacterial OTUs from 634 caterpillar individuals comprising 146 species. Tree diversity was found to drive the diversity of caterpillar-associated bacteria both directly and indirectly via effects on caterpillar communities, and tree diversity was a stronger predictor of bacterial diversity than diversity of caterpillars. Leaf toughness and dry matter content were important traits of the host plant determining bacterial species composition, while leaf calcium and potassium concentration influenced bacterial richness. Our study reveals previously unknown linkages between trees and their characteristics, herbivore insects, and their associated microbes, which contributes to developing a more nuanced understanding of functional dependencies between herbivores and their environment, and has implications for the consequences of plant diversity loss for trophic interactions.

18.
Polymers (Basel) ; 12(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630205

RESUMO

Carbon fiber reinforced plastics (CFRP) have many mechanical properties that are superior to those of conventional structural materials and are becoming more and more widely used. Monitoring the curing process used to produce such composite material is important to ensure the quality of the process, especially for the characterization of residual strains after the material has been manufactured. In this study, we present a tilted fiber Bragg grating (TFBG) sensor used to monitor the curing of CFRP composite materials. The TFBG sensor was embedded into the layers of CFRP laminates to study the curing residual strain of the laminates. The experimental results showed that the curing residual stress was about -22.25 MPa, the axial residual strain was -281.351 µÎµ, and lateral residual strain of 89.91 µÎµ. The TFBG sensor was found to be sensitive to the curing residual strain of the CFRP, meaning that it has potential for use in applications involving composite curing processes. Moreover, it is indeed possible to improve the properties of composite materials via the optimization and monitoring of their curing parameters.

19.
J Integr Plant Biol ; 50(4): 393-401, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18713373

RESUMO

The effect of thermal stress on the antioxidant system was investigated in two invasive plants, Eupatorium adenophorum Spreng. and E. odoratum L. The former is sensitive to high temperature, whereas the latter is sensitive to low temperature. Our aim was to explore the relationship between the response of antioxidant enzymes and temperature in the two invasive weeds with different distribution patterns in China. Plants were transferred from glasshouse to growth chambers at a constant 25 degrees C for 1 week to acclimatize to the environment. For the heat treatments, temperature was increased stepwise to 30, 35, 38 and finally to 42 degrees C. For the cold treatments, temperature was decreased stepwise to 20, 15, 10 and finally to 5 degrees C. Plants were kept in the growth chambers for 24 h at each temperature step. In E. adenophorum, the coordinated increase of the activities of antioxidant enzymes was effective in protecting the plant from the accumulation of active oxygen species (AOS) at low temperature, but the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and monodehydroascorbate reductase (MDAR) were not accompanied by the increase of superoxide dismutase (SOD) during the heat treatments. As a result, the level of lipid peroxidation in E. adenophorum was higher under heat stress than under cold stress. In E. odoratum, however, the lesser degree of membrane damage, as indicated by low monodehydroascorbate content, and the coordinated increase of the oxygen. Detoxifying enzymes were observed in heat-treated plants, but the antioxidant enzymes were unable to operate in cold stress. This indicates that the plants have a higher capacity for scavenging oxygen radicals in heat stress than in cold stress. The different responses of antioxidant enzymes may be one of the possible mechanisms of the differences in temperature sensitivities of the two plant species.


Assuntos
Antioxidantes/metabolismo , Eupatorium/enzimologia , Temperatura , Ascorbato Peroxidases , Catalase/metabolismo , China , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos , NADH NADPH Oxirredutases/metabolismo , Peroxidase/metabolismo , Peroxidases/metabolismo , Superóxido Dismutase/metabolismo
20.
Sci Rep ; 6: 22400, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26928763

RESUMO

The millions of plant specimens that have been collected and stored in Chinese herbaria over the past ~110 years have recently been digitized and geo-referenced. Here we use this unique collection data set for species distribution modeling exercise aiming at mapping &explaining the botanical richness; delineating China's phytogeographical regions and investigating the environmental drivers of the dissimilarity patterns. We modeled distributions of 6,828 woody plants using MaxEnt and remove the collection bias using null model. The continental China was divided into different phytogeographical regions based on the dissimilarity patterns. An ordination and Getis-Ord Gi* hotspot spatial statistics were used to analysis the environmental drivers of the dissimilarity patterns. We found that the annual precipitation and temperature stability were responsible for observed species diversity. The mechanisms causing dissimilarity pattern seems differ among biogeographical regions. The identified environmental drivers of the dissimilarity patterns for southeast, southwest, northwest and northeast are annual precipitation, topographic &temperature stability, water deficit and temperature instability, respectively. For effective conservation of China's plant diversity, identifying the historical refuge and protection of high diversity areas in each of the identified floristic regions and their subdivisions will be essential.


Assuntos
Biodiversidade , Clima , Modelos Teóricos , Plantas/classificação , Chuva , China , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA