Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(15): 3636-3658, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529593

RESUMO

Cancer is a growing worldwide health problem with the most broadly studied treatments, in which immunotherapy has made notable advancements in recent years. However, innumerable patients have presented a poor response to immunotherapy and simultaneously experienced immune-related adverse events, with failed therapeutic results and increased mortality rates. Consequently, it is crucial to develop alternate tactics to boost therapeutic effects without producing negative side effects. Ultrasound is considered to possess significant therapeutic potential in the antitumor field because of its inherent characteristics, including cavitation, pyrolysis, and sonoporation. Herein, this timely review presents the comprehensive and systematic research progress of ultrasound-enhanced cancer immunotherapy, focusing on the various ultrasound-related mechanisms and strategies. Moreover, this review summarizes the design and application of current sonosensitizers based on sonodynamic therapy, with an attempt to provide guidance on new directions for future cancer therapy.


Assuntos
Neoplasias , Terapia por Ultrassom , Humanos , Terapia por Ultrassom/métodos , Ultrassonografia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/patologia , Terapia Combinada , Imunoterapia
2.
ACS Nano ; 18(4): 3424-3437, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227828

RESUMO

Solar dermatitis, a form of acute radiation burn that affects the skin, results from overexposure to ultraviolet B (UVB) radiation in strong sunlight. Cell damage caused by the accumulation of reactive oxygen species (ROS) produced by UVB radiation plays an important role in UVB-induced inflammation in the skin. Here, for efficiently scavenging excess ROS, modulating the microenvironment, and alleviating solar dermatitis, a π-conjugated network polyphthalocyanine supporting a highly surface-exposed Ru active site-based artificial antioxidase (HSE-PPcRu) is designed and fabricated with excellent ROS-scavenging, antioxidant, and anti-inflammatory capabilities. In photodamaged human keratinocyte cells, HSE-PPcRu could modulate mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B signaling pathways, prevent DNA damage, suppress apoptosis, inhibit pro-inflammatory cytokine secretion, and alleviate cell damage. In vivo animal experiments reveal the higher antioxidant and anti-inflammatory efficacies of HSE-PPcRu by reversing the activation of p38 and c-Jun N-terminal kinase, inhibiting expression of cyclooxygenase-2, interleukin-6, interleukin-8, and tumor necrosis factor-α. This work not only provides an idea for alleviating solar dermatitis via catalytically scavenging ROS and modulating the microenvironment but also offers a strategy to design an intelligent conjugated network-based artificial antioxidase with a highly surface-exposed active site.


Assuntos
Antioxidantes , Dermatite , Animais , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Raios Ultravioleta , Anti-Inflamatórios/farmacologia , Dermatite/etiologia , Dermatite/metabolismo
3.
ACS Appl Mater Interfaces ; 16(20): 25856-25868, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38726921

RESUMO

Artificial peroxisomes (AP) with enzyme-mimetic catalytic activity and recruitment ability have drawn a great deal of attention in fabricating protocell systems for scavenging reactive oxygen species (ROS), modulating the inflammatory microenvironment, and reprogramming macrophages, which is of great potential in treating inflammatory diseases such as rheumatoid arthritis (RA). Herein, a macrophage membrane-cloaked Cu-coordinated polyphthalocyanine-based AP (CuAP) is prepared with a macrocyclic conjugated polymerized network and embedded Cu-single atomic active center, which mimics the catalytic activity and coordination environment of natural superoxide dismutase and catalase, possesses the inflammatory recruitment ability of macrophages, and performs photoacoustic imaging (PAI)-guided treatment. The results of both in vitro cellular and in vivo animal experiments demonstrated that the CuAP under ultrasound and microbubbles could efficiently scavenge excess ROS in cells and tissues, modulate microenvironmental inflammatory cytokines such as interleukin-1ß, tumor necrosis factor-α, and arginase-1, and reprogram macrophages by polarization of M1 (proinflammatory phenotype) to M2 (anti-inflammatory phenotype). We believe this study offers a proof of concept for engineering multifaceted AP and a promising approach for a PAI-guided treatment platform for RA.


Assuntos
Artrite Reumatoide , Macrófagos , Técnicas Fotoacústicas , Animais , Macrófagos/metabolismo , Camundongos , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/terapia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Humanos , Cobre/química , Cobre/farmacologia
4.
Nanoscale ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037714

RESUMO

The creation of atomic catalytic centers has emerged as a conducive path to design efficient nanobiocatalysts to serve as artificial antioxidases (AAOs) that can mimic the function of natural antioxidases to scavenge noxious reactive oxygen species (ROS) for protecting stem cells and promoting tissue regeneration. However, the fundamental mechanisms of diverse single-atom sites for ROS biocatalysis remain ambiguous. Herein, we show that highly spontaneous spin polarization mediates the hitherto unclear origin of H2O2-elimination activities in engineering ferromagnetic element (Fe, Co, Ni)-based AAOs with atomic centers. The experimental and theoretical results reveal that Fe-AAO exhibits the best catalase-like kinetics and turnover number, while Co-AAO shows the highest glutathione peroxidase-like activity and turnover number. Furthermore, our investigations prove that both Fe-AAO and Co-AAO can effectively secure the functions of stem cells in high ROS microenvironments and promote the repair of injured tendon tissue by scavenging H2O2 and other ROS. We believe that the proposed highly spontaneous spin polarization engineering of ferromagnetic element-based AAOs will provide essential guidance and practical opportunities for developing efficient AAOs for eliminating ROS, protecting stem cells, and accelerating tissue regeneration.

5.
ACS Sens ; 9(4): 1809-1819, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38587867

RESUMO

While most of the research in graphene-based materials seeks high electroactive surface area and ion intercalation, here, we show an alternative electrochemical behavior that leverages graphene's potential in biosensing. We report a novel approach to fabricate graphene/polymer nanocomposites with near-record conductivity levels of 45 Ω sq-1 and enhanced biocompatibility. This is realized by laser processing of graphene oxide in a sandwich structure with a thin (100 µm) polyethylene terephthalate film on a textile substrate. Such hybrid materials exhibit high conductivity, low polarization, and stability. In addition, the nanocomposites are highly biocompatible, as evidenced by their low cytotoxicity and good skin adhesion. These results demonstrate the potential of graphene/polymer nanocomposites for smart clothing applications.


Assuntos
Grafite , Lasers , Têxteis , Grafite/química , Humanos , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Condutividade Elétrica , Polietilenotereftalatos/química , Animais , Materiais Biocompatíveis/química , Técnicas Biossensoriais/métodos
6.
Science ; 384(6698): 885-890, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781365

RESUMO

Men or mice with homozygous serine/threonine kinase 33 (STK33) mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability. In mice, CDD-2807 exhibited no toxicity, efficiently crossed the blood-testis barrier, did not accumulate in brain, and induced a reversible contraceptive effect that phenocopied genetic STK33 perturbations without altering testis size. Thus, STK33 is a chemically validated, nonhormonal contraceptive target, and CDD-2807 is an effective tool compound.


Assuntos
Anticoncepção , Anticoncepcionais Masculinos , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Bibliotecas de Moléculas Pequenas , Animais , Humanos , Masculino , Camundongos , Barreira Hematotesticular/metabolismo , Anticoncepcionais Masculinos/química , Anticoncepcionais Masculinos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Testículo/efeitos dos fármacos , Anticoncepção/métodos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA