Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36433335

RESUMO

With the increasing demand for human-computer interaction and health monitoring, human behavior recognition with device-free patterns has attracted extensive attention. The fluctuations of the Wi-Fi signal caused by human actions in a Wi-Fi coverage area can be used to precisely identify the human skeleton and pose, which effectively overcomes the problems of the traditional solution. Although many promising results have been achieved, no survey summarizes the research progress. This paper aims to comprehensively investigate and analyze the latest applications of human behavior recognition based on channel state information (CSI) and the human skeleton. First, we review the human profile perception and skeleton recognition progress based on wireless perception technologies. Second, we summarize the general framework of precise pose recognition, including signal preprocessing methods, neural network models, and performance results. Then, we classify skeleton model generation methods into three categories and emphasize the crucial difference among these typical applications. Furthermore, we discuss two aspects, such as experimental scenarios and recognition targets. Finally, we conclude the paper by summarizing the issues in typical systems and the main research directions for the future.


Assuntos
Redes Neurais de Computação , Tecnologia sem Fio , Humanos , Atividades Humanas , Esqueleto
2.
Chin Med J (Engl) ; 136(11): 1339-1348, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36848203

RESUMO

BACKGROUND: Tri-ponderal mass index (TMI) has been reported to be a more accurate estimate of body fat than body mass index (BMI). This study aims to compare the effectiveness of TMI and BMI in identifying hypertension, dyslipidemia, impaired fasting glucose (IFG), abdominal obesity, and clustered cardio-metabolic risk factors (CMRFs) in 3- to 17-year-old children. METHODS: A total of 1587 children aged 3 to 17 years were included. Logistic regression was used to evaluate correlations between BMI and TMI. Area under the curves (AUCs) were used to compare discriminative capability among indicators. BMI was converted to BMI- z scores, and accuracy was compared by false-positive rate, false-negative rate, and total misclassification rate. RESULTS: Among children aged 3 to 17 years, the mean TMI was 13.57 ±â€Š2.50 kg/m 3 for boys and 13.3 ±â€Š2.33 kg/m 3 for girls. Odds ratios (ORs) of TMI for hypertension, dyslipidemia, abdominal obesity, and clustered CMRFs ranged from 1.13 to 3.15, higher than BMI, whose ORs ranged from 1.08 to 2.98. AUCs showed similar ability of TMI (AUC: 0.83) and BMI (AUC: 0.85) in identifying clustered CMRFs. For abdominal obesity and hypertension, the AUC of TMI was 0.92 and 0.64, respectively, which was significantly better than that of BMI, 0.85 and 0.61. AUCs of TMI for dyslipidemia and IFG were 0.58 and 0.49. When 85th and 95th of TMI were set as thresholds, total misclassification rates of TMI for clustered CMRFs ranged from 6.5% to 16.4%, which was not significantly different from that of BMI- z scores standardized according to World Health Organization criteria. CONCLUSIONS: TMI was found to have equal or even better effectiveness in comparison with BMI in identifying hypertension, abdominal obesity, and clustered CMRFs TMI was more stable than BMI in 3- to 17-year-old children, while it failed to identify dyslipidemia and IFG. It is worth considering the use of TMI for screening CMRFs in children and adolescents.


Assuntos
Fatores de Risco Cardiometabólico , Dislipidemias , Hipertensão , Obesidade Infantil , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Índice de Massa Corporal , População do Leste Asiático , Obesidade Abdominal , Obesidade Infantil/diagnóstico
3.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3420-3426, 2023 Dec.
Artigo em Zh | MEDLINE | ID: mdl-38511382

RESUMO

Carbon capture and storage (CCS) technology is an important way to slow down the continuous increase in atmospheric CO2 concentration and to achieve the dual carbon target. Carbon capture and storage through biomass ash is a secure, permanent, and environment friendly way. To better understand the characteristics of biomass ash carbon capture and storage, we summarized progresses on biomass ash carbon capture and storage, clarified the mechanisms of biomass ash carbon sequestration, analyzed the influencing factors, and explored its applications in various domains. The capacity of CCS by biomass ash mainly derived from alkaline earth metal oxides of CaO and MgO. The actual carbon sequestration efficiency is affected by factors such as biomass source, chemical composition, temperature, humidity, pressure, and CO2 concentration. However, the underlying mechanism is unclear. The CCS capacity of biomass ash significantly impacts its potential applications in building materials reuse, soil quality improvement, and adsorbents carbon capture and storage absorbent preparation. Long-term research is critically needed. For future studies, we should strengthen the research on the carbonization efficiency of biomass ash from multiple sources, establish a database related to the impact of biomass ash carbonization, build a methodological system to promote scientific management of biomass ash, develop biomass ash carbon capture and storage technologies, and quantitatively assess its role in carbon sequestration.


Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/química , Biomassa , Óxidos , Temperatura , Sequestro de Carbono
4.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1331-1339, 2022 May.
Artigo em Zh | MEDLINE | ID: mdl-35730092

RESUMO

Exploring the spatio-temporal variation characteristics of carbon source and carbon sink under different disposal methods of crop straw is of great significance for optimizing the utilization policy of crop straw resources in China and realizing the goal of maximizing carbon emission reduction and carbon neutralization. Based on data from National Statistical Yearbook, we examined the changing trends of both the amount and value of carbon emission, carbon emission reduction, carbon sink enhancement under different crop straw disposal methods in 31 provinces of Chinese mainland. The results showed that the mean annual carbon emissions of straw burning in China from 2008 to 2019 were 8.74 million tons of CO2e. Since 2014, the mean annual reduction rate of carbon emissions was 17.3%. The mean annual carbon emission reduction of energy utilization was 39.82 million tons of CO2e, with solid briquette fuel produced by straw contributing the most with a contribution of about 98%. The amount of carbon sequestration of straw returning to field was increasing annually, with an average annual value of 271 million tons of CO2e. There was a carbon ecological surplus in straw disposal in China. The annual growth rate of net carbon emission reduction was 9.8%. The net carbon emission reduction intensity and its value were increasing, reaching 2.62 t·hm-2 and 76.19 yuan·hm-2 in 2019, respectively. A spatial pattern of 'high in the east and low in the west' was observed for the mean annual carbon emissions of straw, energy carbon emission reduction, carbon sink of straw returning to the field, and net carbon emission reduction in China, with main external characteristics of the regional differences and spatial aggregation.


Assuntos
Agricultura , Carbono , Agricultura/métodos , Carbono/análise , Sequestro de Carbono , China , Solo
5.
Ying Yong Sheng Tai Xue Bao ; 33(7): 1966-1974, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-36052801

RESUMO

Ecosystem services are the bridge between ecosystem functions and human welfare. Climate regulation service (CRS) has an extremely important role in ecosystem services. It is important to conduct a comprehensive assessment based on the whole process of CRS occurrence for scientific assessment of ecosystem services. With Fuzhou City as a case, we carried out the assessment of CRS at the local and municipal scales, and analyzed the spatial and temporal variations of CRS at the administrative unit and land use and land cover scales. The results showed that the aggregated physical capacity of CRS in Fuzhou City was 4.01×1012 MJ (monetary value 613.944 billion yuan, GDP 561.808 billion yuan) and 4.66×1012 MJ (monetary value 714.002 billion yuan, GDP 785.681 billion yuan) in 2015 and 2018, respectively, and that the monetary value of CRS was roughly equivalent to the GDP of that year. The main land use/cover (LULC) type was woodland, cultivated land, and water area, which accounted for 57%, 15%, and 9% of Fuzhou's land area, respectively. Water area contributed the most to Fuzhou's CRS, with a contribution of over 60% in 2018, higher than woodland (12%), and cultivated land (13%). The CRS was lower in built-up areas and eastern farming areas. Between 2015 and 2018, the area of LULC change in Fuzhou was 1805.5 km2. The largest changes were cultivated land and wood land. The main land use transfer direction was between cultivated land and woodland, woodland and garden land, cultivated land and residential and industrial and mining land. The aggregated physical capacity of CRS changed by 6.74×1011 MJ, while the corresponding monetary value of 103.58 billion yuan. The CRS changes were concentrated in the central and western regions such as Minhou, Minqing, and Yongtai, and the western mountainous regions such as Luoyuan and Fuqing. The most drastic change of CRS was found in water area. The conversion of water areas produced extremely strong changes in CRS, much stronger than the effects of conversion of other LULC types.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Cidades , Conservação dos Recursos Naturais/métodos , Humanos , Água
6.
Ying Yong Sheng Tai Xue Bao ; 32(11): 3781-3792, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898094

RESUMO

Ecological degradation accounting is a critical content of building green GDP and gross economic-ecological product (GEEP) accounting systems. With ecosystems in Fuzhou City as a research object, we built an accounting framework for the cost of ecological degradation according to the unreasonable human activity. Following the accounting framework, we calculated the ecological degradation cost in Fuzhou City of 2015 and 2018. The results showed that the ecological degradation cost in Fuzhou City of 2015 was 9.08 billion yuan, accounting for 1.6% of local GDP. For different ecosystem types, marine ecological degradation cost was the largest, about 6.311 billion yuan, accounting for 69.5% of the total loss, followed by wetland ecosystem, accounting for 28.7%, and then arable land, contributing only 1.8%. In term of functions, the cost of provisioning degradation was the largest, about 6.313 billion yuan, accounting for 69.5% of the total loss, followed by regulation loss, accounting for 27.5%, mainly from the loss of climate regulation and hydrological regulation. In the regional distribution, the ecological degradation cost was mainly concentrated in Lianjiang County, Luoyuan County, Fuqing City, and Minqing County, up to 8.092 billion yuan in total, accounting for 89.7% of total loss. Compared with 2015, the ecological degradation cost in 2018 decreased by 2.608 billion yuan, showing an obvious downward trend, with a decrease rate of 28.7%. The reductions were major in Lianjiang County (86.4%), Luoyuan County (14.8%), Fuqing City (19.9%), and Minqing County (12.6%), and mainly concentrated in marine and wetland ecosystems. Such a result indicated that people's awareness of ecological protection in Fuzhou City was increasing, and that the ecological damage due to human activity in marine and wetland system was obviously decreased. This study provided data support for promoting regional sustainable development and ecological civilization construction.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Cidades , Humanos , Áreas Alagadas
7.
Ying Yong Sheng Tai Xue Bao ; 32(11): 3793-3804, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898095

RESUMO

The gross economic-ecological product (GEEP) accounting is crucial to promote the construction of ecological civilization, and practice the ideas of "lucid waters and lush mountains are invaluable assets". GEEP accounting had been conducted at national and provincial scales, but not at urban scale. According to the economic and ecological development, the GEEP accounting framework was built in Fuzhou City. The GEEP value of Fuzhou City in 2015 and 2018 was calculated and the spatiotemporal variation was analyzed. The results showed that the GEEP value of Fuzhou City was 1208.568 billion yuan in 2015. Among which, the value of GDP and ecological regulation, and the cost of environmental degradation and ecological damage were 577.742, 636.420, 3.095 and 2.500 billion yuan, respectively. Minqing County had the highest GEEP, with a value of 170.022 billion yuan, which accounted for 14.1% of that in Fuzhou City. The lowered values were found in Fuqing City, Minhou County and Yongtai County, accounting for 12.2%, 12.1% and 10.4%, respectively. In 2018, the GEEP of Fuzhou City increased to 1445.399 billion yuan, with an increase rate of 19.6%, mainly due to the GDP increase (up by 47.4% from 2015). The highest proportions of GEEP were observed in Minqing County and Gulou District (12.0%), followed by Fuqing and Minhou counties (11.0%). Compared with 2015, the increase trends were observed for the total value of GEEP, unit area and per capita of GEEP values in Fuzhou City. The cost of environmental and ecological degradation in Fuzhou decreased by 7.2% and 12.4%, respectively, indicating that the overall ecological environment of Fuzhou was improving. The accounting of GEEP in Fuzhou could effectively make up for the shortage of GDP assessment at the urban scale in China. It could provide an instrument for Fuzhou government to formulate rational ecological civilization assessment system and promote regional sustainable development.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Cidades
8.
Ying Yong Sheng Tai Xue Bao ; 32(11): 3805-3814, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898096

RESUMO

The determination of regional ecological compensation quota and spatial selection are key issues in the study of horizontal transfer payment ecological compensation mechanism. Taking 12 districts of Fuzhou City as the basic research unit, we accounted the ecological function values of forest, grassland, wetland, agriculture, and marine ecosystems in 2015 and 2018. Combined with local economic development situation, we constructed an ecological compensation model. With this model, we determined the ecological compensation quota and spatial distribution of different ecosystems in various districts and counties of Fuzhou. The results showed that from 2015 to 2018, Gulou District had the largest ecological payment, with 36.384 billion yuan, followed by Mawei, Cangshan and Jin'an districts, with 7.809, 6.974 and 6.669 billion yuan, respectively. Luoyuan County and Taijiang District had lower payment, which were 2.942 and 1.903 billion yuan respectively. Among the areas requiring ecological compensation, Lianjiang County and Changle District had high compensation quotas, being 25.120 and 20.261 billion yuan, followed by Yongtai County (12.570 billion yuan). The compensation amounts in Minhou County, Fuqing City and Minqing County were less than 10 billion yuan. The distribution of ecological compensation differed across various ecosystems. In general, the main ecological compensation areas of forest, grassland, wetland and agriculture ecosystem were in Yongtai, Minqing, Minhou, Lianjiang and Luoyuan counties. The compensation amounts were 2.424-31.379 billion yuan in forest, 1.181-20.708 billion yuan in grassland, 1.015-45.493 billion yuan in wetland, and 5.780-23.954 billion yuan in cropland. The main regions that need compensation for marine ecosystem were Lianjiang County, Changle District, and Fuqing City, with the amount of compensation being 8.216-47.854 billion yuan. The results could properly reflect the coordinated development of regional ecological and economic conditions, which could provide a reference for the improvement of the ecological compensation mechanism in Fuzhou City.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cidades , Florestas , Áreas Alagadas
9.
Ying Yong Sheng Tai Xue Bao ; 32(11): 3824-3834, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898098

RESUMO

Wetland plays an important role in ecological protection and social development. Scientific and rational evaluation of the values of wetland ecosystem service is the basis of protection and sustainable utilization of wetland resources. How to scientifically and effectively assess the wetland ecosystem gross ecosystem product (GEP) and make it into the national GDP accounting system are the focus of the scientific community and government departments. In this study, the accounting framework of wetland ecosystem GEP was constructed. Based on multi-source data and from the aspects of function and value, the accounting of wetland GEP in Fuzhou City was carried out. The results showed that the GEP of wetland ecosystem in Fuzhou City was 239.23 billion yuan in 2015. Such value mainly came from the ecological regulation service value (157.869 billion yuan), which accounted for 66.0% of the total and was about 2.2 and 15.6 times of the product supply service value and cultural service value. Among the ecological regulation services of wetlands, hydrodynamic regulation service and climate regulation service were the highest. Together, they accounted for 82.9% of the ecological regulation service value. The ecological regulation value per unit area of wetland in Fuzhou City was 1347.8 thousand yuan·hm-2, which was higher than the mean level of the whole country. In the districts and counties of Fuzhou City, the value of wetland ecosystem in Minqing County was the largest, about 88.83 billion yuan, accounting for 40.1% of the total value of product supply and ecological regulation. In terms of types, coastal wetlands in Fuzhou City had the largest function of ecological regulation services, which was about 2.5 times of that of river wetlands and constructed wetlands. The accounting of GEP of wetland ecosystem in Fuzhou City is an important practice for the conviction of "lucid waters and lush mountains are invaluable assets", which would provide technical support for guiding local government to scientifically manage wetland ecosystem.


Assuntos
Ecossistema , Áreas Alagadas , Cidades , Conservação dos Recursos Naturais , Rios
10.
Ying Yong Sheng Tai Xue Bao ; 32(11): 3865-3871, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898102

RESUMO

With the continuous development of China's society and economy, the breadth and depth of cultivated land resources development and utilization have been continuously expanded, while the production efficiency and scale of cultivated land gradually have been improved. There were rapidly increases of carbon emission induced from cultivated land management, such as the agricultural inputs and energy consumptions. Taking carbon emission from cultivated land utilization in Northeast China as the research object, we determined the carbon emission accounting framework system according to the life cycle method. Based on estimation results of carbon emissions from 1979 to 2015 in Northeast China, the driver factor system affecting agricultural carbon emissions was constructed using logarithmic mean Divisia index model and the influence mechanism of cultivated land carbon emissions in Northeast China was deeply explored. The results showed that total carbon emission from cultivated land utilization in 2015 was 21.9% higher than that in 1979 and carbon emission intensity in 2015 was 1.54 t·hm-2 lower than that in 1979. Soil management and agricultural inputs were the main sources of carbon emissions from cultivated land accounting for 83.6% of the total carbon emissions. The increases of land productivity and science and technology fund allocation rate were found to be the driving factors of carbon emission from cultivated land utilization. On the contrary, the reduction of input/output ratio, cultivated land area per capita and intensity of science and technology investment decreased carbon emission from cultivated land utilization.


Assuntos
Agricultura , Carbono , Carbono/análise , Dióxido de Carbono/análise , China , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA