Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-31, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847125

RESUMO

Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.

2.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493455

RESUMO

Tea contains a variety of bioactive components, including catechins, amino acids, tea pigments, caffeine and tea polysaccharides, which exhibit multiple biological activities. These functional components in tea provide a variety of unique flavors, such as bitterness, astringency, sourness, sweetness and umami, which meet the demand of people for natural plant drinks with health benefits and pleasant flavor. Meanwhile, the traditional process of tea plantation, manufacturing and circulation are often accompanied by the safety problems of pesticide residue, heavy metal, organic solvents and other exogenous risks. High-quality tea extract refers to the special tea extract obtained by enriching the specific components of tea. Through green and efficient extraction technologies, diversed high-quality tea extracts such as high-fragrance and high-amino acid tea extracts, low-caffeine and high-catechin tea extracts, high-bioavailability and high-theaflavin tea extracts, high-antioxidant and high-tea polysaccharide tea extracts, high-umami-taste and low-bitter and astringent taste tea extracts are produced. Furthermore, rapid detection, green control and intelligent processing are applied to monitor the quality of tea in real-time, which guarantee the stability and safety of high-quality tea extracts with enhanced efficiency. These emerging technologies will realize the functionalization and specialization of high-quality tea extracts, and promote the sustainable development of tea industry.


Main high-quality tea extracts and their preparation methods were introduced.Potential pollutants in the processing of tea extracts and their detection methods were proposed.Emerging intelligent processing technologies of tea extract were summarized.The applications of high-quality tea extracts in food industry were explored.Future trends of tea extracts and relevant suggestions were presented.

3.
Crit Rev Food Sci Nutr ; 63(23): 6423-6444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35213241

RESUMO

There are numerous challenges facing the modern food and agriculture industry that urgently need to be addressed, including feeding a growing global population, mitigating and adapting to climate change, decreasing pollution, waste, and biodiversity loss, and ensuring that people remain healthy. At the same time, foods should be safe, affordable, convenient, and delicious. The latest developments in science and technology are being deployed to address these issues. Some of the most important elements within this modern food design approach are encapsulated by the MATCHING model: Meat-reduced; Automation; Technology-driven; Consumer-centric; Healthy; Intelligent; Novel; and Globalization. In this review article, we focus on four key aspects that will be important for the creation of a new generation of healthier and more sustainable foods: emerging raw materials; structural design principles for creating innovative products; developments in eco-friendly packaging; and precision nutrition and customized production of foods. We also highlight some of the most important new developments in science and technology that are being used to create future foods, including food architecture, synthetic biology, nanoscience, and sensory perception.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2033683.


Assuntos
Tecnologia de Alimentos , Carne , Humanos , Carne/análise , Embalagem de Alimentos , Agricultura , Estado Nutricional
4.
Inorg Chem ; 62(42): 17228-17235, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37801687

RESUMO

The separation of phenylenediamine (PDA) isomers is crucial in the field of chemical manufacturing. Herein, we presented a strategy for the separation of PDA isomers (para-phenylenediamine, p-PDA; meta-phenylenediamine, m-PDA; ortho-phenylenediamine, o-PDA) using four supramolecular framework materials of ns-cucurbit[10]uril (ns-Q[10]), (1) ns-Q[10](Cd), (2) ns-Q[10](Mn), (3) ns-Q[10](Cu), (4) ns-Q[10](Pb). Our findings indicated that these supramolecular framework materials of ns-Q[10] showed remarkable selectivity for para-phenylenediamine (p-PDA) in p-PDA, m-PDA, and o-PDA mixtures, respectively. The variations in selectivity observed in these four single-crystal structures arose from variations in the thermodynamic stabilities and binding modes of the host-guest complexes. Importantly, the supramolecular framework based on ns-Q[10] exhibited selective accommodation of p-PDA over its isomers. This study highlighted the practical application of ns-Q[10] in effectively separating PDA isomers and demonstrated the potential utility of ns-Q[10] in isolating other organic molecules.

5.
Beilstein J Org Chem ; 19: 864-872, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346492

RESUMO

In this paper, tetramethyl cucurbit[6]uril (TMeQ[6]) and 1,2-bis(4-pyridyl)ethene (G) were used to construct a supramolecular fluorescent probe G@TMeQ[6]. The host-guest interaction between TMeQ[6] and G was investigated using 1H NMR spectroscopy, single-crystal X-ray diffraction and various experimental techniques. The results show that TMeQ[6] and G form an inclusion complex with a host-guest ratio of 1:1 and the equilibrium association constant (Ka) was 2.494 × 104 M-1. The G@TMeQ[6] fluorescent probe can sensitively recognize Hg2+ ions by fluorescence enhancement. The linear range is 0.33 × 10-5-1.65 × 10-5 mol·L-1, R2 = 0.9926, and the limit of detection is 4.12 × 10-8 mol·L-1. The fluorescent probe can be used to detect the concentration of Hg2+ ions in aqueous solution, and provides a theoretical basis for the development of new fluorescent probes for detecting heavy metal ions.

6.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322538

RESUMO

Neural network (i.e. deep learning, NN)-based data analysis techniques have been listed as a pivotal opportunity to protect the integrity and safety of the global food supply chain and forecast $11.2 billion in agriculture markets. As a general-purpose data analytic tool, NN has been applied in several areas of food science, such as food recognition, food supply chain security and omics analysis, and so on. Therefore, given the rapid emergence of NN applications in food safety, this review aims to provide a comprehensive overview of the NN application in food analysis for the first time, focusing on domain-specific applications in food analysis by introducing fundamental methodology, reviewing recent and notable progress, and discussing challenges and potential pitfalls. NN demonstrated that it has a bright future through effective collaboration between food specialist and the broader community in the food field, for example, superiority in food recognition, sensory evaluation, pattern recognition of spectroscopy and chromatography. However, major challenges impeded NN extension including void in the food scientist-friendly interface software package, incomprehensible model behavior, multi-source heterogeneous data, and so on. The breakthrough from other fields proved NN has the potential to offer a revolution in the immediate future.

7.
Langmuir ; 37(18): 5617-5626, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33914554

RESUMO

A stable water-in-water (W/W) emulsion was formed by mixing dextran and hydroxypropyl methylcellulose (HPMC) with addition of ß-lactoglobulin (Blg) microgels. The microstructure and stability of the W/W emulsion were investigated under different conditions. The microgels accumulating at the liquid-liquid interface led to a stable emulsion at pH 3-5, where the microgels carried positive charges. When the pH was increased above the pI of microgels (∼pH 5), the emulsion was destabilized because the microgels tended to stay in the continuous phase (i.e., dextran) rather than at the interface. The HPMC-in-dextran emulsions were stable under ionic strength levels up to 300 mM. The HPMC-in-dextran emulsion stabilized by Blg microgels was thermally stable, and the heat treatment promoted partial Blg microgel particle-particle fusion on the surface of HPMC droplets at 90 °C. Electrostatic and hydrophobic interactions between dextran and HPMC phase were further investigated to understand the microgels' accumulation at the liquid-liquid interface.

8.
Physiol Plant ; 170(4): 569-579, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32840878

RESUMO

Tomato is one of the most popular horticultural crops, and many commercial tomato cultivars are particularly susceptible to Botrytis cinerea. Non-expressor of pathogenesis-related gene 1 (NPR1) is a critical component of the plant defense mechanisms. However, our understanding of how SlNPR1 influences disease resistance in tomato is still limited. In this study, two independent slnpr1 mutants were used to study the role of SlNPR1 in tomato resistance against B. cinerea. Compared to (WT), slnpr1 leaves exhibited enhanced resistance against B. cinerea with smaller lesion sizes, higher activities of chitinase (CHI), ß-1, 3-glucanases (GLU) and phenylalanine ammonia-lyase (PAL), and significantly increased expressions of pathogenesis-related genes (PRs). The increased activities of peroxidase (POD), ascorbate peroxidase (APX) and decreased catalase (CAT) activities collectively regulated reactive oxygen species (ROS) homeostasis in slnpr1 mutants. The integrity of the cell wall in slnpr1 mutants was maintained. Moreover, the enhanced resistance was further reflected by induction of defense genes involved in jasmonic acid (JA) and ethylene (ET) signaling pathways. Taken together, these findings revealed that knocking out SlNPR1 resulted in increased activities of defense enzymes, changes in ROS homeostasis and integrity of cell walls, and activation of JA and ET pathways, which confers resistance against B. cinerea in tomato plants.


Assuntos
Solanum lycopersicum , Botrytis , Ciclopentanos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Homeostase , Humanos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxilipinas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Inorg Chem ; 57(12): 7412-7419, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29863854

RESUMO

Coordination and supramolecular assemblies of a fully substituted cyclopentanocucurbit[6]uril (CyP6Q[6]) with a series of lanthanide cations (Ln3+) have been investigated in the presence of tetrachlorozincate anion ([ZnCl4]2-). X-ray single-crystal diffraction analysis has revealed that the interaction of CyP6Q[6] and a series of Ln3+cations unexpectedly results in the formation of at least seven different CyP6Q[6]-based coordination complex adduct and supramolecular assemblies groups, including with (1) La3+, Ce3+cations; (2) Pr3+, Nd3+cations; (3) Eu3+, Gd3+, Tb3+, Dy3+ with P1̅ or P1 space group, in which CyP6Q[6] molecules coordinate alternatively with Ln3+cations and form linear coordination polymers; (4) CyP6Q[6] molecules interact alternatively with [Ho(H2O)8]3+ aqueous complexes and form linear supramolecular chains; CyP6Q[6] molecules can assemble two different Ln3+ free porous supramolecular assemblies from CyP6Q[6]-Ln(NO3)3-ZnCl2-HCl systems, Ln = Tm, Yb, and Lu; however, no solid crystals were obtained from system containing Er3+cation. Thus, these differences could lead CyP6Q[6] to be useful in not only the isolation of lighter lanthanides from their heavier lanthanides but also special selectivity for different volatile organic compounds.

10.
Curr Microbiol ; 75(9): 1198-1205, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29777339

RESUMO

A novel cryptic plasmid from Enterococcus durans 1-8, designated as pMK8, was sequenced and analyzed in this study. It consists of 3337 bp with a G + C content of 33.11%. Sequence analysis of pMK8 revealed three putative open reading frames (ORFs). Based on homology, two of them were identified as genes encoding replication initiation (RepC) and mobilization (Mob) protein, respectively. Sequence analysis revealed a pT181 family double-strand origin (dso) and a putative single-strand origin (sso) located upstream of the repC gene. Sequence homology analysis indicated that the sso belongs to the ssoW family. Southern hybridization confirmed the presence of single-strand DNA (ssDNA) intermediates, suggesting that pMK8 replicates via the RCR mechanism. Furthermore, the relative copy number of pMK8 was estimated by real-time PCR to be 175 ± 14 copies in each cell.


Assuntos
Replicação do DNA/genética , DNA Circular/genética , Enterococcus/genética , Plasmídeos/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Composição de Bases , Sequência de Bases , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , Enterococcus/isolamento & purificação , Dosagem de Genes/genética , Leite/microbiologia , Fases de Leitura Aberta , Conformação Proteica , Origem de Replicação/genética , Homologia de Sequência
11.
J Food Sci Technol ; 55(9): 3485-3497, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30150807

RESUMO

Curcumin, a natural polyphenolic compound, offers a wide range of pharmacological benefits such as antioxidant, anti-inflammatory and anti-cancer. The oil-in-water nanoemulsions containing curcumin were obtained by high pressure homogenization and effects of various emulsifiers (Tween-80, lecithin, whey protein isolate and acacia) and different surfactant-to-oil ratios (SOR) on physicochemical characteristics, physical stability and storage stability of curcumin loaded nanoemulsions were evaluated in this study. The result showed that smaller particle size, better physical and storage stabilities and higher curcumin content were found in curcumin loaded nanoemulsions stabilized with Tween-80 and lecithin. Compared with nanoemulsions prepared with lecithin, nanoemulsions fabricated with Tween-80 exhibited better uniformity and distribution as demonstrated by microscopic observations. It was found that SOR was positively correlated with particle size but negatively correlated with curcumin content in the emulsion droplets. Neither the emulsifier nor SOR values were found to have significant effects on zeta-potentials of the droplets. This result implied that curcumin loaded nanoemulsions prepared with Tween-80 and higher SOR values helped curcumin to achieve better physical stability and storage stability.

12.
ACS Sens ; 9(5): 2465-2475, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38682311

RESUMO

The development of chemiluminescence-based innovation sensing systems and the construction of a sensing mechanism to improve the analytical performance of compounds remain a great challenge. Herein, we fabricated an advanced oxidation processes pretreated chemiluminescence (AOP-CL) sensing system via the introduction of cobalt-modified black phosphorus nanosheets (Co@BPNs) to achieve higher efficient thiabendazole (TBZ) detection. Co@BPNs, enriched with lattice oxygen, exhibited a superior catalytic performance for accelerating the decomposition of ferrate (VI). This Co@BPNs-based ferrate (VI) AOP system demonstrated a unique ability to selectively decompose TBZ, resulting in a strong CL emission. On this basis, a highly selective and sensitive CL sensing platform for TBZ was established, which exhibited strong resistance to common ions and pesticides interference. This was successfully applied to detecting TBZ in environmental samples such as tea and kiwi fruits. Besides, the TBZ detection mechanism was explored, Co@BPNs-based ferrate (VI) AOP system produced a high yield of ROS (mainly 1O2), which oxidized the thiazole-based structure of TBZ, generating chemical energy that was transferred to Co@BPNs via a chemical electron exchange luminescence (CIEEL) mechanism, leading to intense CL emission. Notably, this study not only proposed an innovative approach to enhance the chemical activity and CL properties of nanomaterials but also offered a new pathway for designing efficient CL probes for pollutant monitoring in complex samples.


Assuntos
Cobalto , Medições Luminescentes , Nanoestruturas , Fósforo , Tiabendazol , Cobalto/química , Fósforo/química , Tiabendazol/análise , Nanoestruturas/química , Medições Luminescentes/métodos , Ferro/química
13.
RSC Adv ; 14(4): 2652-2658, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38229718

RESUMO

Cucurbit[n]urils (Q[n]s) are a class of supramolecular host compounds with hydrophilic carbonyl ports and hydrophobic cavities, which can selectively form host-guest inclusion complexes with guest molecules to change the properties of guest molecules. In this paper, tetramethyl cucurbit[6]uril (TMeQ[6]) was used as the host and three 2-heterocyclic substituted benzimidazole derivatives as the guests, and their modes of interaction were investigated using X-ray crystallography, 1H NMR spectrometry, and other analytical techniques. The results showed that TMeQ[6] formed a 1 : 1 host-guest inclusion complex with three guest molecules, and the binding process between them was mainly enthalpy-driven. The X-ray diffraction analysis indicated that the main driving forces for the formation of these three inclusion complexes included hydrogen bonding interactions and ion dipole interactions. There are two modes of interaction between G3 and TMeQ[6] in the liquid phase, indicating that the benzimidazole ring and heterocyclic substituents on the guest molecule compete with the cavity of TMeQ[6]. Besides, the addition of TMeQ[6] significantly enhanced the fluorescence of these guests and slightly improved their solubility.

14.
Adv Sci (Weinh) ; : e2403578, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973336

RESUMO

Addressing the critical need for swift and precise nutritional profiling in healthcare and in food industry, this study pioneers the integration of vision-language models (VLMs) with chemical analysis techniques. A cutting-edge VLM is unveiled, utilizing the expansive UMDFood-90k database, to significantly improve the speed and accuracy of nutrient estimation processes. Demonstrating a macro-AUCROC of 0.921 for lipid quantification, the model exhibits less than 10% variance compared to traditional chemical analyses for over 82% of the analyzed food items. This innovative approach not only accelerates nutritional screening by 36.9% when tested amongst students but also sets a new benchmark in the precision of nutritional data compilation. This research marks a substantial leap forward in food science, employing a blend of advanced computational models and chemical validation to offer a rapid, high-throughput solution for nutritional analysis.

15.
Nat Commun ; 15(1): 3893, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719799

RESUMO

Maintaining food safety and quality is critical for public health and food security. Conventional food preservation methods, such as pasteurization and dehydration, often change the overall organoleptic quality of the food products. Herein, we demonstrate a method that affects only a thin surface layer of the food, using beef as a model. In this method, Joule heating is generated by applying high electric power to a carbon substrate in <1 s, which causes a transient increase of the substrate temperature to > ~2000 K. The beef surface in direct contact with the heating substrate is subjected to ultra-high temperature flash heating, leading to the formation of a microbe-inactivated, dehydrated layer of ~100 µm in thickness. Aerobic mesophilic bacteria, Enterobacteriaceae, yeast and mold on the treated samples are inactivated to a level below the detection limit and remained low during room temperature storage of 5 days. Meanwhile, the product quality, including visual appearance, texture, and nutrient level of the beef, remains mostly unchanged. In contrast, microorganisms grow rapidly on the untreated control samples, along with a rapid deterioration of the meat quality. This method might serve as a promising preservation technology for securing food safety and quality.


Assuntos
Microbiologia de Alimentos , Conservação de Alimentos , Animais , Bovinos , Conservação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Carne/microbiologia , Temperatura Alta , Carne Vermelha/microbiologia , Calefação , Inocuidade dos Alimentos/métodos
16.
Food Chem ; 422: 136087, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141757

RESUMO

Ethylene production is essential for improving cold resistance of postharvest tomatoes. However, the role of ethylene signaling pathway in maintaining fruit quality during long-term cold storage remains poorly understood. Here, we demonstrated that a partial loss of function in ethylene signaling by mutation of Ethylene Response Factor 2 (SlERF2), worsened fruit quality during cold storage, as determined by visual characterization, and physiological analyses of membrane damage and reactive oxygen species metabolism. In addition, the transcriptions of genes related to abscisic acid (ABA) biosynthesis and signaling were also altered by SlERF2 gene in response to cold storage. Furthermore, mutation of SlERF2 gene compromised cold-induced expression of genes in the C-repeat/dehydration-responsive binding factor (CBF) signaling pathway. Therefore, it's concluded that an ethylene signaling component, SlERF2 contributed to the regulations of ABA biosynthesis and signaling, as well as CBF cold signaling pathway, ultimately affecting the fruit quality during long-term cold storage of tomatoes.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/química , Etilenos/metabolismo , Transdução de Sinais , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
17.
Foods ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673458

RESUMO

Pickering emulsions stabilized by TEMPO-oxidized chitin nanocrystals (T-ChNCs) were developed for quercetin delivery. T-ChNCs were synthesized by TEMPO oxidation chitin and systematically characterized in terms of their physicochemical properties. T-ChNCs were rod-like with a length of 279.7 ± 11.5 nm and zeta potential around -56.1 ± 1.6 mV. The Pickering emulsions were analyzed through an optical microscope and CLSM. The results showed that the emulsion had a small droplet size (972.9 ± 86.0 to 1322.3 ± 447.7 nm), a high absolute zeta potential value (-48.2 ± 0.8 to -52.9 ± 1.9 mV) and a high encapsulation efficiency (quercetin: 79.6%). The emulsion stability was measured at different levels of T-ChNCs and pH values. The droplet size and zeta potential decreased with longer storage periods. The emulsions formed by T-ChNCs retarded the release of quercetin at half rate of that of the quercetin ethanol solution. These findings indicated that T-ChNCs are a promising candidate for effectively stabilizing Pickering emulsions and controlling release of quercetin.

18.
J Agric Food Chem ; 71(18): 6789-6802, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37102791

RESUMO

Flavor molecules are commonly used in the food industry to enhance product quality and consumer experiences but are associated with potential human health risks, highlighting the need for safer alternatives. To address these health-associated challenges and promote reasonable application, several databases for flavor molecules have been constructed. However, no existing studies have comprehensively summarized these data resources according to quality, focused fields, and potential gaps. Here, we systematically summarized 25 flavor molecule databases published within the last 20 years and revealed that data inaccessibility, untimely updates, and nonstandard flavor descriptions are the main limitations of current studies. We examined the development of computational approaches (e.g., machine learning and molecular simulation) for the identification of novel flavor molecules and discussed their major challenges regarding throughput, model interpretability, and the lack of gold-standard data sets for equitable model evaluation. Additionally, we discussed future strategies for the mining and designing of novel flavor molecules based on multi-omics and artificial intelligence to provide a new foundation for flavor science research.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Simulação por Computador , Bases de Dados de Compostos Químicos , Bases de Dados Factuais
19.
Chem Commun (Camb) ; 59(93): 13851-13854, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37936519

RESUMO

Fluorescent carbon quantum dots (CQDs) were synthesized from cucurbit[7]uril (Q[7]) and 2,2-bis(hydroxymethyl)propionic (DMPA) by a hydrothermal method. The Q[7]-DMPA complex was confirmed by X-ray crystallography. The CQDs showed blue fluorescence, photostability, and ionic strength stability. They were used to detect histamine with a low limit of 2.33 × 10-6 M.


Assuntos
Histamina , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Corantes Fluorescentes/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-35564343

RESUMO

While production and consumption of meat cast a shadow over the prospects for sustainable development, artificial meat may be the solution. However, consumer acceptability of artificial meat is a major impediment to its use as a suitable alternative. This study analyzed the relationship between regulatory focus and consumer acceptance of artificial meat using randomized controlled trial data. Results showed that promotion focus results in a higher acceptance of artificial meat products due to a higher perceived benefit and lower perceived risk, whereas prevention focus results in a lower acceptance of artificial meat products due to perceived benefit being lower and perceived risk being higher. The moderating effect of the message framing was investigated employing structural equation modeling (SEM). It was discovered that a gain-oriented message framing could greatly strengthen the association between promotion focus and perceived benefit, whereas an avoidance-oriented message framing could significantly diminish the relationship between prevention focus and perceived risk. This study has crucial implications for how policymakers and industries communicate with consumers about artificial meat.


Assuntos
Produtos da Carne , Carne , Povo Asiático , Atitude , China , Comportamento do Consumidor , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA