Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Health ; 21(1): 124, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588154

RESUMO

BACKGROUND: Bisphenol A (BPA) and its substitutes bisphenol S (BPS) and bisphenol F (BPF) are endocrine-disrupting chemicals widely used in consumer products, which have been proposed to induce various human diseases. In western countries, one of the most common liver diseases is non-alcoholic fatty liver disease (NAFLD). However, studies on the associations of the three bisphenols with NAFLD in human beings are scarce. METHODS: We included 960 participants aged ≥ 20 years from the NHANES 2013-16 who had available data on levels of urinary BPA, BPS and BPF. The hepatic steatosis index (HSI) > 36 was used to predict NAFLD. Logistic regression analysis and mediation effect analysis were used to evaluate the associations among bisphenols, glycolipid-related markers and NAFLD. RESULTS: A total of 540 individuals (56.3%) were diagnosed with NAFLD, who had higher concentrations of BPA and BPS but not BPF than those without NAFLD. An increasing trend in NAFLD risks and HSI levels was observed among BPA and BPS tertiles (p for trend < 0.05). After adjustment for confounders, elevated levels of BPA or BPS but not BPF were significantly associated with NAFLD. The odds ratio for NAFLD was 1.581 (95% confidence intervals [CI]: 1.1-2.274, p = 0.013) comparing the highest with the lowest tertile of BPA and 1.799 (95%CI: 1.2462.597, p = 0.002) for BPS. Mediation effect analysis indicated that serum high-density lipoprotein cholesterol and glucose had a mediating effect on the relationships between bisphenols and NAFLD. CONCLUSIONS: The present study showed that high exposure levels of BPA and BPS increased NAFLD incidence, which might be mediated through regulating glycolipids metabolism. Further studies on the role of bisphenols in NAFLD are warranted.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Estudos Transversais , Inquéritos Nutricionais , Compostos Benzidrílicos/urina
2.
BMC Cardiovasc Disord ; 22(1): 575, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581799

RESUMO

BACKGROUNDS: Remarkable interindividual variability in clopidogrel response is observed, genetic polymorphisms in P2RY12 and its signal pathway is supposed to affect clopidogrel response in CHD patients. METHODS: 539 CHD patients treated with clopidogrel were recruited. The platelet reaction index (PRI) indicated by VASP-P level were detected in 12-24 h after clopidogrel loading dose or within 5-7 days after initiation of maintain dose clopidogrel. A total of 13 SNPs in relevant genes were genotyped in sample A (239 CHD patients). The SNPs which have significant differences in PRI will be validated in another sample (sample B, 300 CHD patients). RESULTS: CYP2C19*2 increased the risk of clopidogrel resistance significantly. When CYP2C19*2 and CYP2C19*3 were considered, CYP2C19 loss of function (LOF) alleles were associated with more obviously increased the risk of clopidogrel resistance; P2RY12 rs6809699C > A polymorphism was also associated with increased risk of clopidogrel resistance (AA vs CC: P = 0.0398). This difference still existed after stratification by CYP2C19 genotypes. It was also validated in sample B. The association was also still significant even in the case of stratification by CYP2C19 genotypes in all patients (sample A + B). CONCLUSION: Our data suggest that P2RY12 rs6809699 is associated with clopidogrel resistance in CHD patients. Meanwhile, the rs6809699 AA genotype can increase on-treatment platelet activity independent of CYP2C19 LOF polymorphisms.


Assuntos
Clopidogrel , Doença das Coronárias , Inibidores da Agregação Plaquetária , Receptores Purinérgicos P2Y12 , Humanos , Clopidogrel/farmacologia , Doença das Coronárias/tratamento farmacológico , Doença das Coronárias/genética , Citocromo P-450 CYP2C19/genética , Genótipo , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo de Nucleotídeo Único , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/genética
3.
Eur J Clin Pharmacol ; 77(3): 359-368, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33089397

RESUMO

PURPOSE: Dual antiplatelet therapy with aspirin and clopidogrel is commonly used for coronary artery disease (CAD) patients undergoing percutaneous coronary intervention to prevent stent thrombosis and ischemic events. However, some patients show high on-treatment platelet reactivity (HTPR) during clopidogrel therapy. Genetic factors such as loss-of-function variants of CYP2C19 are validated to increase the risk of HTPR. Flavin-containing monooxygenase 3 (FMO3) is reported to be associated with potency of platelet responsiveness and thrombosis. This study aimed to explore the association between FMO3 rs1736557 polymorphism and clopidogrel response. METHODS: Five hundred twenty-two Chinese CAD patients treated with dual antiplatelet therapy were recruited from Xiangya Hospital. After oral administration of 300 mg loading dose (LD) clopidogrel for 12-24 h or 75 mg daily maintenance dose (MD) clopidogrel for at least 5 days, the platelet reaction index (PRI) was determined by vasodilator-stimulated phosphoprotein-phosphorylation assay. FMO3 rs1736557, CYP2C19*2, and CYP2C19*3 polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS: Mean PRI value was significantly higher in CYP2C19 poor metabolizers (PMs) and intermediate metabolizers (IMs) than the extensive metabolizers (EMs) (p < 0.001). In addition, FMO3 rs1736557 AA homozygotes showed significantly lower PRI as compared with carriers of the major rs1736557 G allele in the entire cohort and in the MD cohort (p = 0.011, p = 0.008, respectively). The risk of HTPR was decreased significantly in carriers of the rs1736557 A allele (AA vs GG: OR = 0.316, 95% CI: 0.137-0.726, p = 0.005; AA vs GA: OR = 0.249, 95% CI: 0.104-0.597, p = 0.001; AA vs GG+GA: OR = 0.294, 95% CI: 0.129-0.669, p = 0.002), and the association was observed mainly in patients carrying the CYP2C19 LOF allele and in those administered with MD. CONCLUSION: The FMO3 rs1736557 AA genotype was related to an increased the antiplatelet potency of clopidogrel in Chinese CAD patients. Additional studies are required to verify this finding.


Assuntos
Clopidogrel/administração & dosagem , Doença da Artéria Coronariana/tratamento farmacológico , Oxigenases/genética , Inibidores da Agregação Plaquetária/administração & dosagem , Idoso , Povo Asiático/genética , Aspirina/administração & dosagem , Clopidogrel/farmacologia , Doença da Artéria Coronariana/genética , Citocromo P-450 CYP2C19/genética , Terapia Antiplaquetária Dupla , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo Genético
4.
Cardiovasc Drugs Ther ; 33(1): 13-23, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30637549

RESUMO

PURPOSE: Necroptosis is an important form of cell death following myocardial ischemia/reperfusion (I/R) and phosphoglycerate mutase 5 (PGAM5) functions as the convergent point for multiple necrosis pathways. This study aims to investigate whether inhibition of PGAM5 could reduce I/R-induced myocardial necroptosis and the underlying mechanisms. METHODS: The SD rat hearts (or H9c2 cells) were subjected to 1-h ischemia (or 10-h hypoxia) plus 3-h reperfusion (or 4-h reoxygenation) to establish the I/R (or H/R) injury model. The myocardial injury was assessed by the methods of biochemistry, H&E (hematoxylin and eosin), and PI/DAPI (propidium iodide/4',6-diamidino-2-phenylindole) staining, respectively. Drug interventions or gene knockdown was used to verify the role of PGAM5 in I/R (or H/R)-induced myocardial necroptosis and possible mechanisms. RESULTS: The I/R-treated heart showed the injuries (increase in infarct size and creatine kinase release), upregulation of PGAM5, dynamin-related protein 1 (Drp1), p-Drp1-S616, and necroptosis-relevant proteins (RIPK1/RIPK3, receptor-interacting protein kinase 1/3; MLKL, mixed lineage kinase domain-like); these phenomena were attenuated by inhibition of PGAM5 or RIPK1. In H9c2 cells, H/R treatment elevated the levels of PGAM5, RIPK1, RIPK3, MLKL, Drp1, and p-Drp1-S616 and induced mitochondrial dysfunctions (elevation in mitochondrial membrane potential and ROS level) and cellular necrosis (increase in LDH release and the ratio of PI+/DAPI+ cells); these effects were blocked by inhibition or knockdown of PGAM5. CONCLUSIONS: Inhibition of PGAM5 can reduce necroptosis in I/R-treated rat hearts through suppression of Drp1; there is a positive feedback between RIPK1 and PGAM5, and PGAM5 might serve as a novel therapeutic target for prevention of myocardial I/R injury.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Inibidores Enzimáticos/farmacologia , Glicolatos/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fosfoglicerato Mutase/antagonistas & inibidores , Fosfoproteínas Fosfatases/antagonistas & inibidores , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais/efeitos dos fármacos
5.
Can J Physiol Pharmacol ; 95(5): 474-480, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28177697

RESUMO

NADPH oxidase (NOX) is a major source of reactive oxygen species (ROS) in the body and it plays a key role in mediation of oxidative injury in the cardiovascular system. The purposes of this study are to evaluate the status of NOX in endothelial progenitor cells (EPCs) of hyperlipidemic rats and to determine whether NOX-derived ROS promotes the dysfunction of EPCs. The rats were fed on a high-fat diet for 8 weeks to establish a hyperlipidemic rat model, which showed the increased plasma lipids and the impaired functions of circulating EPCs (including the reduced abilities in migration and adhesion) accompanied by an increase in NOX activity and ROS production. Next, EPCs were isolated from normal rats and they were treated with oxidized low-density lipoprotein (ox-LDL) (100 µg/mL) for 24 h to induce a dysfunctional model in vitro. In agreement with our findings in vivo, ox-LDL treatment increased the dysfunctions of EPCs concomitant with an increase in NOX activity and ROS production; these phenomena were reversed by the NOX inhibitor. Based on these observations, we conclude that NOX-derived ROS involved in the dysfunctions of circulating EPCs in hyperlipidemic rats and inhibition of NOX might provide a novel strategy to improve EPC functions in hyperlipidemia.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Progenitoras Endoteliais/patologia , Inibidores Enzimáticos/farmacologia , Hiperlipidemias/induzido quimicamente , Lipoproteínas LDL/farmacologia , Masculino , NADPH Oxidases/antagonistas & inibidores , Fenótipo , Ratos , Ratos Sprague-Dawley
6.
Biochemistry (Mosc) ; 81(6): 591-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27301287

RESUMO

Cadherin is an epidermal growth factor and laminin-G seven-pass G-type receptor 1 (CELSR1) is a key component of the noncanonical Wnt/planar cell polarity (PCP) pathway that critically regulates endothelial cell proliferation and angiogenesis. In this study, we examined the biological significance of CELSR1 in endothelial cell migration and angiogenesis. For this, we applied both gain-of-function and loss-of-function approaches. To increase the endogenous expression of CELSR1, we used the transcription activator-like effector (TALE) technology and constructed an artificial TALE-VP64 activator. To knock down the expression of CELSR1, we generated lentivirus containing short hairpin RNA sequences targeting different regions of CELSR1 mRNA. Following up- or down-regulation of CELSR1 in human aortic endothelial cells (HAEC), we assessed in vitro cell proliferation by MTT assay, migration by scratch and transwell migration assays, and angiogenesis by tube formation analysis. We found that CELSR1 was endogenously expressed in human umbilical vein endothelial cells (HUVEC) and HAEC. When focusing on HAEC, we found that upregulating CELSR1 expression significantly promoted cell growth, while knocking down CELSR1 inhibited the growth (p < 0.05). Using both scratch and transwell migration assays, we observed a positive correlation between CELSR1 expression and cell migratory capability. In addition, CELSR1 upregulation led to higher levels of tube formation in HAEC, while downregulating CELSR1 expression decreased tube formation (p < 0.05). Mechanistically, CELSR1-regulated migration and tube formation was mediated through disheveled segment polarity protein 3 (Dvl3). In conclusion, CELSR1 plays an important role in regulating multiple phenotypes of endothelial cells, including proliferation, migration, and formation of capillary-like structures.


Assuntos
Caderinas/metabolismo , Células Endoteliais/citologia , Neovascularização Fisiológica/genética , Caderinas/antagonistas & inibidores , Caderinas/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
7.
Biochem Biophys Res Commun ; 467(4): 859-65, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26474698

RESUMO

Myeloperoxidase (MPO)-derived product hypochlorous acid (HOCl) is able to induce cellular senescence and MPO is also expressed in endothelial cells besides the well-recognized immune cells. This study aims to clarify the association of endothelium-derived MPO with endothelial senescence in hyperlipidemia. The rats were fed with high-fat diet for 8 weeks to establish a hyperlipidemic model, which showed an increase in plasma lipids, endothelium-derived MPO expression, endothelial senescence and endothelial dysfunction concomitant with a reduction in glycogen synthase kinase 3 beta (GSK-3ß) activity and phosphorylated ß-catenin (p-ß-catenin) level as well as an increase in ß-catenin and p53 levels within the endothelium. Next, human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low density lipoprotein (ox-LDL, 100 µg/ml) for 24 h to establish a senescent cell model in vitro. Consistent with the finding in vivo, ox-LDL-induced MPO expression and HUVECs senescence, accompanied by a decrease in GSK-3ß activity and p-ß-catenin level as well as an increase in HOCl content, ß-catenin and p53 levels; these phenomena were attenuated by MPO inhibitor. Replacement of ox-LDL with HOCl could also induce HUVECs senescence and activate the ß-catenin/p53 pathway. Based on these observations, we conclude that endothelium-derived MPO is upregulated in hyperlipidemic rats, which may contribute to the accelerated vascular endothelial senescence through a mechanism involving the ß-catenin/p53 pathway.


Assuntos
Células Endoteliais/metabolismo , Hiperlipidemias/metabolismo , Ácido Hipocloroso/metabolismo , Lipoproteínas LDL/metabolismo , Peroxidase/metabolismo , beta Catenina/metabolismo , Animais , Senescência Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hiperlipidemias/patologia , Ácido Hipocloroso/farmacologia , Lipídeos/sangue , Lipoproteínas LDL/farmacologia , Masculino , Peroxidase/química , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/metabolismo
8.
Basic Res Cardiol ; 110(4): 38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25982880

RESUMO

Recent studies demonstrated that NADPH oxidase 2 (NOX2) expression in myocardium after ischemia-reperfusion (IR) is significantly upregulated. However, the underlying mechanisms remain unknown. This study aims to determine if nuclear cardiac myosin light chain 2 (MYL2), a well-known regulatory subunit of myosin, functions as a transcription factor to promote NOX2 expression following myocardial IR in a phosphorylation-dependent manner. We examined the phosphorylation status of nuclear MYL2 (p-MYL2) in a rat model of myocardial IR (left main coronary artery subjected to 1 h ligation and 3 h reperfusion) injury, which showed IR injury and upregulated NOX2 expression as expected, accompanied by elevated H2O2 and nuclear p-MYL2 levels; these effects were attenuated by inhibition of myosin light chain kinase (MLCK). Next, we explored the functional relationship of nuclear p-MYL2 with NOX2 expression in H9c2 cell model of hypoxia-reoxygenation (HR) injury. In agreement with our in vivo findings, HR treatment increased apoptosis, NOX2 expression, nuclear p-MYL2 and H2O2 levels, and the increases were ameliorated by inhibition of MLCK or knockdown of MYL2. Finally, molecular biology techniques including co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), DNA pull-down and luciferase reporter gene assay were utilized to decipher the molecular mechanisms. We found that nuclear p-MYL2 binds to the consensus sequence AGCTCC in NOX2 gene promoter, interacts with RNA polymerase II and transcription factor IIB to form a transcription preinitiation complex, and thus activates NOX2 gene transcription. Our results demonstrate that nuclear MYL2 plays an important role in IR injury by transcriptionally upregulating NOX2 expression to enhance oxidative stress in a phosphorylation-dependent manner.


Assuntos
Miosinas Cardíacas/fisiologia , Glicoproteínas de Membrana/genética , Miocárdio/metabolismo , Cadeias Leves de Miosina/fisiologia , NADPH Oxidases/genética , Animais , Miosinas Cardíacas/análise , Núcleo Celular/química , Células Cultivadas , Masculino , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Cadeias Leves de Miosina/análise , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , NADPH Oxidase 2 , Estresse Oxidativo , Fosforilação , Ratos , Ratos Sprague-Dawley
9.
J Cardiovasc Pharmacol ; 65(1): 80-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25264750

RESUMO

Endothelial progenitor cells (EPCs) play a critical role in maintenance of the endothelial integrity and vascular homeostasis, as well as in neovascularization. Dysfunctional EPCs are believed to contribute to the endothelial dysfunction and are closely related to the development of various cardiovascular diseases, such as hypertension, hyperlipidemia, and stroke. However, the underlying mechanisms of EPC dysfunction are complicated and remain largely elusive. Recent studies have demonstrated that reactive oxygen species (ROS) are key factors that involve in modulation of stem and progenitor cell function under various physiologic and pathologic conditions. It has been shown that NADPH oxidase (NOX)-derived ROS are the major sources of ROS in cardiovascular system. Accumulating evidence suggests that NOX-mediated oxidative stress can modulate EPC bioactivities, such as mobilization, migration, and neovascularization, and that inhibition of NOX has been shown to improve EPC functions. This review summarized recent progress in the studies on the correlation between NOX-mediated EPC dysfunction and cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Células Progenitoras Endoteliais/patologia , NADPH Oxidases/metabolismo , Animais , Endotélio Vascular/fisiopatologia , Humanos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
10.
Planta Med ; 81(15): 1361-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252829

RESUMO

Salviaolate is a group of depside salts isolated from Danshen (a traditional Chinese herbal medicine), with ≥ 85 % of magnesium lithospermate B. This study aims to investigate whether salviaolate is able to protect the rat brain from ischemia/reperfusion injury and the underlying mechanisms. Rats were subjected to 2 h of cerebral ischemia and 24 h of reperfusion to establish an ischemia/reperfusion injury model. The neuroprotective effects of salviaolate at different dosages were evaluated. A dosage (25 mg/kg) was chosen to explore the neuroprotective mechanisms of salviaolate. Neurological function, infarct volume, cellular apoptosis, nicotinamide adenine dinucleotide phosphate-oxidase activity, and H2O2 content were measured. In a nerve cell model of hypoxia/reoxygenation injury, magnesium lithospermate B was applied. Cellular apoptosis, lactate dehydrogenase, nicotinamide adenine dinucleotide phosphate-oxidase activity, and H2O2 content were examined. Ischemia/reperfusion treatment significantly increased the neurological deficit score, infarct volume, and cellular apoptosis accompanied by the elevated nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 content in the rat brains. Administration of salviaolate reduced ischemia/reperfusion-induced cerebral injury in a dose-dependent manner concomitant with a decrease in nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 production. Magnesium lithospermate B (20 mg/kg) and edaravone (6 mg/kg, the positive control) achieved the same beneficial effects as salviaolate did. In the cell experiments, the injury (indicated by apoptosis ratio and lactate dehydrogenase release), nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 content were dramatically increased following hypoxia/reoxygenation, which were attenuated in the presence of magnesium lithospermate B (10(-5) M), VAS2870 (nicotinamide adenine dinucleotide phosphate-oxidase inhibitor), or edaravone (10(-5) M). The results suggest that salviaolate is able to protect the brain from ischemia/reperfusion oxidative injury, which is related to the inhibition of nicotinamide adenine dinucleotide phosphate-oxidase and a reduction of reactive oxygen species production.


Assuntos
Benzofuranos/uso terapêutico , Isquemia Encefálica/prevenção & controle , Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , NADPH Oxidases/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Salvia miltiorrhiza/química , Animais , Antioxidantes/uso terapêutico , Benzoxazóis/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Células Cultivadas , China , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Masculino , Ratos , Ratos Sprague-Dawley , Triazóis/farmacologia , Ácido Rosmarínico
11.
Ann Hum Biol ; 42(1): 26-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25117632

RESUMO

BACKGROUND: Recently, CELSR1 was identified by genome-wide association studies (GWAS) as a susceptibility gene for ischaemic stroke (IS) in Japanese individuals. AIM: The goal was to examine whether CELSR1 variants are associated with IS in the Chinese Han population. SUBJECTS AND METHODS: This study genotyped two single nucleotide polymorphisms (SNPs) of CELSR1, rs6007897 and rs4044210, in a Chinese sample of 569 IS cases and 581 controls and assessed their genotype and allele associations with IS. RESULTS: The results showed that rs6007897 and rs4044210 variants of CELSR1 were significantly (p < 0.01) associated with IS. These associations remained after adjustment for age, gender, smoking status, hypertension, diabetes mellitus and hypercholesterolemia. In addition, a significant association was observed of rs6007897 and rs4044210 of CELSR1 with large artery atherosclerosis (LAA), a sub-type of IS (p < 0.01). CONCLUSION: Taken together, the present study has proven for the first time that CELSR1 is a susceptibility gene for IS in the Chinese Han population, especially for LAA.


Assuntos
Aterosclerose/genética , Isquemia Encefálica/genética , Caderinas/genética , Acidente Vascular Cerebral/genética , Idoso , Estudos de Casos e Controles , China , Etnicidade/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
12.
J Cardiovasc Pharmacol ; 63(6): 567-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24492474

RESUMO

Recent studies show that resveratrol exerts beneficial effects on prevention of pulmonary hypertension. This study is performed to explore the effects of trimethoxystilbene, a novel resveratrol analog, on rat pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-induced pulmonary arterial hypertension (PAH) and the underlying mechanisms. Sprague-Dawley rats were placed in a chamber and exposed to 10% O(2) continuously for 4 weeks to induce PAH. The effects of trimethoxystilbene (5 or 10 mg/kg per day, intragastric [i.g.]) and resveratrol (as a positive control, 25 mg/kg per day, i.g.) on hypoxia-induced PAH vascular remodeling and right ventricle hypertrophy were evaluated. At the end of experiments, the index for pulmonary vascular remodeling and right ventricle hypertrophy, inflammatory cell infiltration in lung tissue, the plasma levels and lung tissue contents of hydrogen peroxide (H(2)O(2)), the mRNA and protein levels for NADPH oxidases (NOX2, NOX4) and vascular peroxidase 1 (VPO1) in pulmonary artery or right ventricle were measured. The results showed that trimethoxystilbene treatment significantly attenuated hypoxia-induced pulmonary vascular remodeling (such as decrease in the ratio of wall thickness to vessel external diameter) and right ventricle hypertrophy (such as decrease in the ratio of right ventricle weight to the length of the tibia), accompanied by downregulation of NOX2, NOX4, and VPO1 expression in pulmonary artery or right ventricle, decrease in H(2)O(2) production and inflammatory cell infiltration in lung tissue. Trimethoxystilbene is able to prevent pulmonary vascular remodeling and right ventricle hypertrophy in hypoxia-induced rat model of PAH, which is related to inhibition of the NOX/VPO1 pathway-mediated oxidative stress and the inflammatory reaction.


Assuntos
Hemeproteínas/antagonistas & inibidores , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/tratamento farmacológico , Glicoproteínas de Membrana/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Peroxidases/antagonistas & inibidores , Estilbenos/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Hemeproteínas/metabolismo , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Hipóxia/enzimologia , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Masculino , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Peroxidases/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estilbenos/química , Estilbenos/uso terapêutico , Remodelação Ventricular/fisiologia
13.
Sci Total Environ ; 912: 169418, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104813

RESUMO

BACKGROUND: Epidemiological studies have explored the relationship between air pollution and cardiovascular and metabolic diseases (CVMDs). Accumulating evidence has indicated that gut microbiota deeply affects the risk of CVMDs. However, the findings are controversial and the causality remains uncertain. To evaluate whether there is the causal association of four air pollutants with 19 CVMDs and the potential effect of gut microbiota on these relationships. METHODS: Genetic instruments for particulate matter (PM) with aerodynamic diameter < 2.5 µm (PM2.5), <10 µm (PM10), PM2.5 absorbance, nitrogen oxides (NOx) and 211 gut microbiomes were screened. Univariable Mendelian randomization (UVMR) was used to estimate the causal effect of air pollutants on CVMDs in multiple MR methods. Additionally, to account for the phenotypic correlation among pollutant, the adjusted model was constructed using multivariable Mendelian randomization (MVMR) analysis to strength the reliability of the predicted associations. Finally, gut microbiome was assessed for the mediated effect on the associations of identified pollutants with CVMDs. RESULTS: Causal relationships between NOx and angina, heart failure and hypercholesterolemia were observed in UVMR. After adjustment for air pollutants in MVMR models, the genetic correlations between PM2.5 and hypertension, type 2 diabetes mellitus (T2DM) and obesity remained significant and robust. In addition, genus-ruminococcaceae-UCG003 mediated 7.8 % of PM2.5-effect on T2DM. CONCLUSIONS: This study firstly provided the genetic evidence linking air pollution to CVMDs and gut microbiota may mediate the association of PM2.5 with T2DM. Our findings highlight the significance of air quality in CVMDs risks and suggest the potential of modulating intestinal microbiota as novel therapeutic targets between air pollution and CVMDs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Doenças Metabólicas , Humanos , Reprodutibilidade dos Testes , Exposição Ambiental , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia
14.
Headache ; 53(10): 1595-601, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24021092

RESUMO

OBJECTIVE: Recent genome-wide association studies (GWAS) have identified 3 loci in or near PRDM16 (1p36.32, rs2651899), LRP1 (12q13.3, rs11172113) and TRPM8 (2q37.1, rs10166942) in the population-based Women's Genome Health Study (WGHS) of migraine, and 2 loci in or near TRPM8 and LRP1 were repeated in European GWAS study. To evaluate whether the same variants are related to migraine in Chinese population, we investigated migraine with aura (MA) and migraine without aura (MO) patients of Chinese Han ethnicity in mainland China. METHODS: A case-control study in a cohort of 207 migraine cases and 205 ethnically matched controls was conducted by using the dual-color fluorescence resonance energy transfer (FRET) probes analysis. RESULTS: The genotypes of all polymorphisms in 2 groups followed the Hardy-Weinberg equilibrium. We found significant differences in allele distribution of rs2651899 variant in PRDM16 between MO patients and control subjects (P = .049, OR = 1.335, 95%CI 1.001-1.782), and there were no difference between MA patients and controls in the frequency of genotype and allele. Also, no significant differences in genotypic and allelic distributions between MA or MO patients and controls were observed in the polymorphisms of rs10166942 of TRPM8 and rs11172113 of LRP1, and there was no significant difference comparing male with female in all loci. CONCLUSION: Our data suggested that rs2651899 variant in PRDM16 plays a potential role in Chinese MO migraine susceptibility, and gender may not play a role.


Assuntos
Povo Asiático/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/genética , Fatores de Transcrição/genética , Adulto , Povo Asiático/etnologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Seguimentos , Predisposição Genética para Doença/etnologia , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/etnologia , Fatores de Risco , Adulto Jovem
15.
Zool Res ; 44(5): 867-881, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37537141

RESUMO

Synaptic dysfunction is an important pathological hallmark and cause of Alzheimer's disease (AD). High-frequency stimulation (HFS)-induced long-term potentiation (LTP) has been widely used to study synaptic plasticity, with impaired LTP found to be associated with AD. However, the exact molecular mechanism underlying synaptic plasticity has yet to be completely elucidated. Whether genes regulating synaptic plasticity are altered in AD and contribute to disease onset also remains unclear. Herein, we induced LTP in the hippocampal CA1 region of wild-type (WT) and AD model mice by administering HFS to the CA3 region and then studied transcriptome changes in the CA1 region. We identified 89 genes that may participate in normal synaptic plasticity by screening HFS-induced differentially expressed genes (DEGs) in mice with normal LTP, and 43 genes that may contribute to synaptic dysfunction in AD by comparing HFS-induced DEGs in mice with normal LTP and AD mice with impaired LTP. We further refined the 43 genes down to 14 by screening for genes with altered expression in pathological-stage AD mice without HFS induction. Among them, we found that the expression of Pygm, which catabolizes glycogen, was also decreased in AD patients. We further demonstrated that down-regulation of PYGM in neurons impaired synaptic plasticity and cognition in WT mice, while its overexpression attenuated synaptic dysfunction and cognitive deficits in AD mice. Moreover, we showed that PYGM directly regulated energy generation in neurons. Our study not only indicates that PYGM-mediated energy production in neurons plays an important role in synaptic function, but also provides a novel LTP-based strategy to systematically identify genes regulating synaptic plasticity under physiological and pathological conditions.


Assuntos
Doença de Alzheimer , Potenciação de Longa Duração , Plasticidade Neuronal , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/patologia
16.
Basic Res Cardiol ; 107(3): 266, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22476986

RESUMO

Vascular peroxidase 1 (VPO1) can utilize reactive oxygen species (ROS) generated from NADPH oxidase (NOX) to catalyze peroxidative reactions. This study was performed to identify a novel pathway of NOX/VPO1 in mediating the oxidative injury following myocardial ischemia reperfusion (IR). In a rat model of myocardial IR, the infarct size, serum creatine kinase (CK) activity, apoptosis, NOX activity, NOX2 and VPO1 expression were measured. In a cell (rat heart-derived H9c2 cells) model of hypoxia/reoxygenation (HR), the apoptosis, NOX activity, NOX2 and VPO1 expression, and H(2)O(2) and HOCl levels were examined. In vivo, IR caused 54.8 ± 1.7 % infarct size in myocardium accompanied by elevated activities of CK, caspase-3 and NOX, up-regulated VPO1 expression and high numbers of myocardial apoptotic cells; these effects were attenuated by pretreatment with the inhibitor of NOX. In vitro, inhibition of NOX or silencing of NOX2 or VPO1 expression significantly suppressed HR-induced cellular apoptosis concomitantly with decreased HOCl production. Inhibition of NOX or silencing of NOX2 led to a decrease in H(2)O(2) production accompanied by a decrease in VPO1 expression and HOCl production. However, silencing of VPO1 expression did not affect NOX2 expression and H(2)O(2) production. H(2)O(2)-induced VPO1 expression was partially reversed by JNK or p38 MAPK inhibitor. Our results demonstrate a novel pathway of NOX2/VPO1 in myocardium, where VPO1 coordinates with NOX2 and amplifies the role of NOX-derived ROS in oxidative injury following IR.


Assuntos
Hemeproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Infarto do Miocárdio/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Peroxidases/metabolismo , Transdução de Sinais , Animais , Apoptose , Caspase 3/metabolismo , Linhagem Celular , Creatina Quinase/sangue , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Hemeproteínas/genética , Peróxido de Hidrogênio/metabolismo , Ácido Hipocloroso/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/genética , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Zhonghua Xin Xue Guan Bing Za Zhi ; 40(12): 991-6, 2012 Dec.
Artigo em Zh | MEDLINE | ID: mdl-23363711

RESUMO

OBJECTIVE: To explore the role of NADPH oxidase inhibitor apocynin on ischemia/reperfusion (I/R)-induced myocardial injury. METHODS: Male SD rat hearts were divided into the normal control group; sham group; I/R group (1 h ischemia followed by 3 h reperfusion); I/R + apocynin group (50 mg/kg, administrated at 30 min before reperfusion) and I/R + vehicle group (same volume vehicle administrated at 30 min before reperfusion). At the end of reperfusion, myocardial infarct size, apoptosis, plasma CK activity, myocardial NOX activity, myocardial caspase-3 expression and activity, myocardial mRNA and protein expressions of vascular peroxidase 1 (VPO1) and NOX2 were measured. RESULTS: Infarct size, ratio of cardiomyocyte apoptosis, mRNA and protein expression of VOP1 and NOX2, serum CK, myocardial NOX and caspase-3 activities in the I/R group were all significantly increased compared to those in the sham group (P < 0.01). Above parameters were similar between I/R + vehicle group and I/R group (all P > 0.05). Infarct size, ratio of cardiomyocyte apoptosis, myocardial mRNA and protein expression of VOP1 and NOX2, serum CK, myocardial NOX and caspase-3 activities were significantly lower in I/R + apocynin group compared to those in I/R group (all P < 0.01). CONCLUSIONS: NOX/VPO pathway plays an important role in mediating I/R-induced myocardial oxidative injury. NOX inhibition could reduce I/R-induced myocardial oxidative injury by attenuating myocardial apoptosis in this model.


Assuntos
Acetofenonas/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , NADPH Oxidases/antagonistas & inibidores , Peroxidases/metabolismo , Animais , Apoptose , Inibidores Enzimáticos/farmacologia , Hemeproteínas/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley
18.
J Am Heart Assoc ; 10(21): e021129, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713722

RESUMO

Background Dual antiplatelet therapy based on aspirin and P2Y12 receptor antagonists such as clopidogrel is currently the primary treatment for coronary artery disease (CAD). However, a percentage of patients exhibit clopidogrel resistance, in which genetic factors play vital roles. This study aimed to investigate the roles of GAS5 (growth arrest-specific 5) and its rs55829688 polymorphism in clopidogrel response in patients with CAD. Methods and Results A total of 444 patients with CAD receiving dual antiplatelet therapy from 2017 to 2018 were enrolled to evaluate the effect of GAS5 single nucleotide polymorphism rs55829688 on platelet reactivity index. Platelets from 37 patients of these patients were purified with microbeads to detect GAS5 and microRNA-223-3p (miR-223-3p) expression. Platelet-rich plasma was isolated from another 17 healthy volunteers and 46 newly diagnosed patients with CAD to detect GAS5 and miR-223-3p expression. A dual-luciferase reporter assay was performed to explore the interaction between miR-223-3p and GAS5 or P2Y12 3'-UTR in (human embryonic kidney 293 cell line that expresses a mutant version of the SV40 large T antigen) HEK 293T and (megakaryoblastic cell line derived in 1983 from the bone marrow of a chronic myeloid leukemia patient with megakaryoblastic crisis) MEG-01 cells. Loss-of-function and gain-of-function experiments were performed to reveal the regulation of GAS5 toward P2Y12 via miR-223-3p in MEG-01 cells. We observed that rs55829688 CC homozygotes showed significantly decreased platelet reactivity index than TT homozygotes in CYP2C19 poor metabolizers. Platelet GAS5 expression correlated positively with both platelet reactivity index and P2Y12 mRNA expressions, whereas platelet miR-223-3p expression negatively correlated with platelet reactivity index. Meanwhile, a negative correlation between GAS5 and miR-223-3p expressions was observed in platelets. MiR-223-3p mimic reduced while the miR-223-3p inhibitor increased the expression of GAS5 and P2Y12 in MEG-01 cells. Knockdown of GAS5 by siRNA increased miR-223-3p expression and decreased P2Y12 expression, which could be reversed by the miR-223-3p inhibitor. Meanwhile, overexpression of GAS5 reduced miR-223-3p expression and increased P2Y12 expression, which could be reversed by miR-223-3p mimic. Conclusions GAS5 rs55829688 polymorphism might affect clopidogrel response in patients with CAD with the CYP2C19 poor metabolizer genotypes, and GAS5 regulates P2Y12 expression and clopidogrel response by acting as a competitive endogenous RNA for miR-223-3p.


Assuntos
Doença da Artéria Coronariana , Clopidogrel/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/genética , Citocromo P-450 CYP2C19/genética , Humanos , MicroRNAs/genética , Inibidores da Agregação Plaquetária/uso terapêutico , Ticlopidina
19.
Front Genet ; 11: 713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754199

RESUMO

Familial Alzheimer's disease (FAD) present as a positive family history of cognitive decline, with early onset and an autosomal dominant inheritance pattern. FAD is mainly caused by the mutations in the genes encoding for amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). In the present study, we identified a variant (c.529T > G, p.Phe177Val) in PSEN1 across three generations in a Chinese family with FAD using whole-exome sequencing. The mean age of onset was 39 years (range: 37 to 40 years) in this family. In cell transfection studies, the mutant PSEN1 protein carrying p.Phe177Val increased both the production of Aß42 and the ratio of Aß42 over Aß40, as compared to wild-type PSEN1. Our results confirm the pathogenicity of PSEN1 p.Phe177Val variant in FAD and broaden the clinical phenotype spectrum of FAD patients with PSEN1 p.Phe177Val variant.

20.
Front Neurol ; 11: 399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536902

RESUMO

To determine the cortical mechanism that underlies the cognitive impairment and motor disability in hereditary spastic paraplegia (HSP), nine HSP patients from a Chinese family were examined using clinical evaluation, cognitive screening, and genetic testing. Controls were matched healthy subjects. White-matter fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD; tract-based spatial statistics), cortical thickness (FreeSurfer), and subcortical gray matter (FIRST) based on T1-weighted MRI and diffusion tensor imaging were analyzed. A novel mutation in the SPAST gene (NM_014946.3, c.1321+2T>C) was detected. Patients had motor disability and low Montreal Cognitive Assessment (MoCA) scores. Patients showed significantly decreased total gray- and white-matter volumes, corpus callosum volume, cortical thickness, and subcortical gray-matter volume as well as significantly lower FA and AD values and significantly higher MD and RD values in the corpus callosum and corticospinal tract. Cortical thickness, subcortical gray-matter volume, and MoCA score were negatively correlated with disease duration. Cortical thickness in the right inferior frontal cortex was negatively correlated with Spastic Paraplegia Rating Scale score. Cortical thickness and right hippocampus volume were positively correlated with the MoCA score and subscores. In conclusion, brain damage is not restricted to the white matter in SPG4-HSP patients, and widespread gray-matter damage may account for the disease progression, cognitive impairment, and disease severity in SPG4-HSP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA