Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Immunol ; 24(2): 255-266, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658237

RESUMO

Despite tumor-associated macrophages (TAMs) playing a key role in shaping the tumor microenvironment (TME), the mechanisms by which TAMs influence the TME and contribute to cancer progression remain unclear. Here, we show that the N6-methyladenosine reader YTHDF2 regulates the antitumor functions of TAMs. YTHDF2 deficiency in TAMs suppressed tumor growth by reprogramming TAMs toward an antitumoral phenotype and increasing their antigen cross-presentation ability, which in turn enhanced CD8+ T cell-mediated antitumor immunity. YTHDF2 deficiency facilitated the reprogramming of TAMs by targeting interferon-γ-STAT1 signaling. The expression of YTHDF2 in TAMs was regulated by interleukin-10-STAT3 signaling. Selectively targeting YTHDF2 in TAMs using a Toll-like receptor 9 agonist-conjugated small interfering RNA reprogrammed TAMs toward an antitumoral phenotype, restrained tumor growth and enhanced the efficacy of PD-L1 antibody therapy. Collectively, our findings describe the role of YTHDF2 in orchestrating TAMs and suggest that YTHDF2 inhibition is an effective approach to enhance cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Macrófagos , Macrófagos Associados a Tumor , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Nat Immunol ; 23(5): 718-730, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35487987

RESUMO

Type I innate lymphoid cells (ILC1s) are critical regulators of inflammation and immunity in mammalian tissues. However, their function in cancer is mostly undefined. Here, we show that a high density of ILC1s induces leukemia stem cell (LSC) apoptosis in mice. At a lower density, ILC1s prevent LSCs from differentiating into leukemia progenitors and promote their differentiation into non-leukemic cells, thus blocking the production of terminal myeloid blasts. All of these effects, which require ILC1s to produce interferon-γ after cell-cell contact with LSCs, converge to suppress leukemogenesis in vivo. Conversely, the antileukemia potential of ILC1s wanes when JAK-STAT or PI3K-AKT signaling is inhibited. The relevant antileukemic properties of ILC1s are also functional in healthy individuals and impaired in individuals with acute myeloid leukemia (AML). Collectively, these findings identify ILC1s as anticancer immune cells that might be suitable for AML immunotherapy and provide a potential strategy to treat AML and prevent relapse of the disease.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Animais , Imunidade Inata , Linfócitos/metabolismo , Mamíferos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
4.
Trends Immunol ; 43(10): 833-847, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058806

RESUMO

Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.


Assuntos
Interleucina-15 , Neoplasias , Citocinas , Humanos , Imunoterapia , Células Matadoras Naturais , Neoplasias/terapia
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027451

RESUMO

The axis of platelet-derived growth factor (PDGF) and PDGF receptor-beta (PDGFRß) plays prominent roles in cell growth and motility. In addition, PDGF-D enhances human natural killer (NK) cell effector functions when binding to the NKp44 receptor. Here, we report an additional but previously unknown role of PDGF-D, whereby it mediates interleukin-15 (IL-15)-induced human NK cell survival but not effector functions via its binding to PDGFRß but independent of its binding to NKp44. Resting NK cells express no PDGFRß and only a low level of PDGF-D, but both are significantly up-regulated by IL-15, via the nuclear factor κB signaling pathway, to promote cell survival in an autocrine manner. Both ectopic and IL-15-induced expression of PDGFRß improves NK cell survival in response to treatment with PDGF-D. Our results suggest that the PDGF-D-PDGFRß signaling pathway is a mechanism by which IL-15 selectively regulates the survival of human NK cells without modulating their effector functions.


Assuntos
Interleucina-15/metabolismo , Células Matadoras Naturais/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Linfocinas , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptor 2 Desencadeador da Citotoxicidade Natural , Fator de Crescimento Derivado de Plaquetas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
6.
J Immunol ; 208(9): 2109-2121, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35418470

RESUMO

CD1d, a lipid Ag-presenting molecule for invariant NKT (iNKT) cells, is abundantly expressed on adipocytes and regulates adipose homeostasis through iNKT cells. CD1d gene expression was restored in visceral adipose tissue adipocytes of CD1d knockout (KO) mice to investigate the interactions between adipocytes and immune cells within adipose tissue. We developed an adipocyte-specific targeting recombinant adeno-associated viral vector, with minimal off-target transgene expression in the liver, to rescue CD1d gene expression in visceral adipose tissue adipocytes of CD1d KO mice, followed by assessment of immune cell alternations in adipose tissue and elucidation of the underlying mechanisms of alteration. We report that adeno-associated virus-mediated gene transfer of CD1d to adipocytes in CD1d KO mice fails to rescue iNKT cells but leads to massive and selective expansion of T cells within adipose tissue, particularly CD8+ T effector cells, that is associated with adipocyte NLRP3 inflammasome activation, dysregulation of adipocyte functional genes, and upregulation of apoptotic pathway proteins. An NLRP3 inhibitor has no effect on T cell phenotypes whereas depletion of CD8+ T cells significantly attenuates inflammasome activation and abolishes the dysregulation of adipocyte functional genes induced by adipocyte CD1d. In contrast, adipocyte overexpression of CD1d fails to induce T cell activation in wild-type mice or in invariant TCR α-chain Jα18 KO mice that have a normal lymphocyte repertoire except for iNKT cells. Our studies uncover an adipocyte CD1d → CD8+ T cell → adipocyte inflammasome cascade, in which CD8+ T cells function as a key mediator of adipocyte inflammation likely induced by an allogeneic response against the CD1d molecule.


Assuntos
Linfócitos T CD8-Positivos , Inflamassomos , Adipócitos , Animais , Antígenos CD1d , Linfócitos T CD8-Positivos/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
7.
Gastroenterology ; 162(4): 1319-1333, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999097

RESUMO

BACKGROUND & AIMS: Pancreatic cancer (PC) is the third leading cause of cancer-related death with a 5-year survival rate of approximately 10%. It typically presents as a late-stage incurable cancer and chemotherapy provides modest benefit. Here, we demonstrate the feasibility, safety, and potency of a novel human natural killer (NK) cell-based immunotherapy to treat PC. METHODS: The expression of prostate stem cell antigen (PSCA) was evaluated in primary PC at messenger RNA and protein levels. The processes of retroviral transduction, expansion, activation, and cryopreservation of primary human NK cells obtained from umbilical cord blood were optimized, allowing us to develop frozen, off-the-shelf, allogeneic PSCA chimeric antigen receptor (CAR) NK cells. The safety and efficacy of PSCA CAR NK cells also expressing soluble (s) interleukin 15 (PSCA CAR_s15 NK cells) were evaluated in vitro and in vivo. RESULTS: PSCA was elevated in primary human PC compared with the adjacent or other normal tissues. PSCA CAR_s15 NK cells displayed significant tumor-suppressive effects against PSCA(+) PC in vitro before and after 1 cycle of freeze-thaw. The viability of frozen PSCA CAR_s15 NK cells persisted more than 90 days in vivo after their last infusion and significantly prolonged the survival of mice engrafted with human PC. CONCLUSIONS: PSCA CAR_s15 NK cells showed therapeutic efficacy in human metastatic PC models without signs of systematic toxicity, providing a strong rationale to support clinical development.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias Pancreáticas/patologia , Próstata , Células-Tronco/metabolismo , Neoplasias Pancreáticas
8.
Curr Opin Oncol ; 35(5): 446-452, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37551952

RESUMO

PURPOSE OF REVIEW: Natural killer (NK) cells are innate lymphoid cells characterized by their ability to attack aberrant and cancerous cells. In contrast to the activation of T-cells, NK cell activation is controlled by the interaction of NK cell receptors and their target cells in a manner independent of antigen organization. Due to NK cells' broad array of activation cues, they have gained great attention as a potential therapeutic agent in cancer immunotherapy. RECENT FINDINGS: Ex vivo activation, expansion, and genetic modifications, such as the addition of a chimeric antigen receptor (CAR), will allow the next generation of NK cells to enhance cytotoxicity, promote survival, and create "off-the-shelf" products. In addition to these that are poised to greatly enhance their clinical activity, the inherent lack of potential for causing graft-versus-host disease (GVHD) and cytokine release syndrome (CRS) suggest that CAR NK cells have the potential to be complementary to CAR-T cells as a component of therapeutic strategies for cancer. SUMMARY: In this review, we will provide a general understanding of NK cell biology, CAR-NK cell advantages over CAR-T cell therapy, barriers to making NK cell immunotherapy viable, and current NK cell clinical trials for hematological malignancies and solid tumors. The next generation of NK cells has potential to change the circumstances guiding present cancer immunotherapies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunidade Inata , Imunoterapia , Células Matadoras Naturais/patologia
9.
Cancer Treat Res ; 190: 49-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38112999

RESUMO

Cancer immunotherapy, which modulates immune responses against tumors using immune-checkpoint inhibitors or adoptive cell transfer, has emerged as a novel and promising therapy for tumors. However, only a minority of patients demonstrate durable responses, while the majority of patients are resistant to immunotherapy. The immune system can paradoxically constrain and promote tumor development and progression. This process is referred to as cancer immunoediting. The mechanisms of resistance to immunotherapy seem to be that cancer cells undergo immunoediting to evade recognition and elimination by the immune system. RNA modifications, specifically N6-methyladenosine (m6A) methylation, have emerged as a key regulator of various post-transcriptional gene regulatory processes, such as RNA export, splicing, stability, and degradation, which play unappreciated roles in various physiological and pathological processes, including immune system development and cancer pathogenesis. Therefore, a deeper understanding of the mechanisms by which RNA modifications impact the cancer immunoediting process can provide insight into the mechanisms of resistance to immunotherapies and the strategies that can be used to overcome such resistance. In this chapter, we briefly introduce the background of cancer immunoediting and immunotherapy. We also review and discuss the roles and mechanisms of RNA m6A modifications in fine-tuning the innate and adaptive immune responses, as well as in regulating tumor escape from immunosurveillance. Finally, we summarize the current strategies targeting m6A regulators for cancer immunotherapy.


Assuntos
Neoplasias , RNA , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Imunoterapia Adotiva
10.
Mol Cancer ; 21(1): 76, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296338

RESUMO

N6-methyladenosine (m6A) is the most abundant epigenetic modification of RNA, and its dysregulation drives aberrant transcription and translation programs that promote cancer occurrence and progression. Although defective gene regulation resulting from m6A often affects oncogenic and tumor-suppressing networks, m6A can also modulate tumor immunogenicity and immune cells involved in anti-tumor responses. Understanding this counterintuitive concept can aid the design of new drugs that target m6A to potentially improve the outcomes of cancer immunotherapies. Here, we provide an up-to-date and comprehensive overview of how m6A modifications intrinsically affect immune cells and how alterations in tumor cell m6A modifications extrinsically affect immune cell responses in the tumor microenvironment (TME). We also review strategies for modulating endogenous anti-tumor immunity and discuss the challenge of reshaping the TME. Strategies include: combining specific and efficient inhibitors against m6A regulators with immune checkpoint blockers; generating an effective programmable m6A gene-editing system that enables efficient manipulation of individual m6A sites; establishing an effective m6A modification system to enhance anti-tumor immune responses in T cells or natural killer cells; and using nanoparticles that specifically target tumor-associated macrophages (TAMs) to deliver messenger RNA or small interfering RNA of m6A-related molecules that repolarize TAMs, enabling them to remodel the TME. The goal of this review is to help the field understand how m6A modifications intrinsically and extrinsically shape immune responses in the TME so that better cancer immunotherapy can be designed and developed.


Assuntos
Neoplasias , RNA , Adenosina/genética , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Microambiente Tumoral/genética
11.
Cancer Sci ; 110(7): 2100-2109, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31100180

RESUMO

The presence of interleukin (IL)-17-producing T cells has recently been reported in non-small cell lung cancer (NSCLC) patients. However, the long-term prognostic significance of these populations in NSCLC patients remains unknown. In the present study, we collected peripheral blood from 82 NSCLC patients and 22 normal healthy donors (NC). Percentages of IL-17-producing CD4+ T (Th17), CD8+ T (Tc17) and γδT cells (γδT17) were measured to determine their association with clinical outcomes and overall survival (OS) in NSCLC. All NSCLC patients were followed up until July 2018. Median follow-up time was 13.5 months (range 1-87 months). The 3- and 5-year survival rate was 27% and 19.6%, respectively. We found that Th17 cells and γδT17 cells were significantly increased, whereas Tc17 cells were markedly decreased in patients with NSCLC compared with those in NC. In addition, Th17 cells were significantly positively associated with T helper type 1 cells (Th1), whereas γδT17 cells were significantly negatively associated with γδT + interferon (IFN)-γ+ cells. High percentages of peripheral Tc17 cells were significantly associated with favorable 5-year OS (P = .025), especially in patients with early TNM stage (P = .016). Furthermore, high percentages of peripheral Th17 cells were positively associated with favorable 5-year OS in patients with late TNM stage (P = .002). However, no significant association was observed between γδT17 cells and OS, regardless of the TNM stage. In conclusion, our findings suggest that enhanced Th17 and reduced Tc17 cells in the peripheral blood could be a significant predictor of a favorable prognosis for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Interleucina-17/metabolismo , Neoplasias Pulmonares/patologia , Linfócitos T/citologia , Células Th17/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Interferon gama/metabolismo , Linfócitos Intraepiteliais/citologia , Linfócitos Intraepiteliais/imunologia , Neoplasias Pulmonares/imunologia , Contagem de Linfócitos , Masculino , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Linfócitos T/imunologia , Células Th1/citologia , Células Th1/imunologia , Células Th17/imunologia
12.
Cell Physiol Biochem ; 45(4): 1631-1640, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29486474

RESUMO

BACKGROUND/AIMS: Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin (Ig) superfamily that belongs to the carcinoembryonic antigen (CEA) family which plays a dual role in cancer. Previous studies showed high expression of CEACAM1 in multiple myeloma (MM). The aim of this study was to investigate the biological consequences of CEACAM1 overexpression in MM. METHODS: pEGFP-N1-CEACAM1 and pcDNA3.1-CEACAM1 expression plasmids were transfected into U-266 and RPMI8266 cell lines . Effect of CEACAM1 overexpression on the proliferation of two cell lines were tested by the CCK8 assay. Cell cycle and Apoptotic changes after CEACAM1 transfection were examined with AnnexinV-FITC/PI by flow cytometry. Hochest staining assay was used to confirm the apoptotic changes. Caspase-3 activity was examined by Western blotting. The cell invasion and migration activity change after CEACAM1 transfection were performed by well chamber assays and a wound healing, respectively. MMP-2 and MMP-9 proteins expression were detected by Western blotting. Flow cytometry immunophenotyping was be evaluated on myeloma cells from bone marrow taken from 50 patients with symptomatic MM newly diagnosed. The correlations between CEACAM1 expression levels and the clinical features across all groups were investigated. RESULTS: CEACAM1 overexpression significantly suppressed MM cell proliferation, induced cell apoptosis, and inhibited cell invasion and migration possibly through activation of caspase-3 and downregulation of MMP-2 and MMP-9. CEACAM1 expression in patients with DS stage I was more frequent (61.5%) than those with DS stage II (21.1%) or III (22.2%). Furthermore, patients with ß2-microglobulin levels equal to or less than 3.5 mg/L had higher CEACAM1 expression than those with ß2-microglobulin levels greater than 3.5 mg/L. CONCLUSION: Our findings suggest that CEACAM1 may act as a tumor suppressor in MM.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Mieloma Múltiplo/patologia , Idoso , Antígenos CD/genética , Apoptose , Células da Medula Óssea/citologia , Caspase 3/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Imunofenotipagem , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Mieloma Múltiplo/metabolismo , Estadiamento de Neoplasias , Transfecção
13.
J Immunol ; 192(3): 1277-85, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24363427

RESUMO

It was shown that the proteasome inhibitor, bortezomib, administered immediately following allogeneic bone marrow transplantation resulted in marked inhibition of acute graft-versus-host disease (aGVHD), with retention of graft-versus-tumor effects. However, continuous bortezomib administration resulted in significant acceleration of graft-versus-host disease-dependent morbidity. We carried out studies to dissect the mechanisms of aggravated aGVHD caused by delayed bortezomib administration. First, we demonstrated that IL-1ß was critically involved, and the subsequent aGVHD could be alleviated by IL-1ß blockade. Bortezomib treatment after dendritic cell (DC) activation resulted in drastically elevated IL-1ß production, whereas bortezomib treatment before DC activation inhibited IL-1ß production, suggesting that the timing of bortezomib administration significantly affected IL-1ß production by DCs. We further demonstrated that delayed administration of bortezomib accelerated aGVHD through TLR4 signaling. Because the LPS levels were much lower with reduced-intensity conditioning compared with high-dose irradiation, the accelerated graft-versus-host disease-dependent morbidity with delayed bortezomib administration could be rescued by reduced-intensity conditioning. Our studies suggested that TLR4 pathway activation and delayed bortezomib administration amplified the production of IL-1ß and other inflammatory cytokines, which resulted in accelerated aGVHD-dependent morbidity. These results indicated that decreased toxicity of continuous bortezomib administration could be achieved by reduced-intensity conditioning or by inhibiting IL-1ß.


Assuntos
Transplante de Medula Óssea , Ácidos Borônicos/toxicidade , Doença Enxerto-Hospedeiro/induzido quimicamente , Interleucina-1beta/fisiologia , Inibidores de Proteases/toxicidade , Pirazinas/toxicidade , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/fisiologia , Doença Aguda , Animais , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/farmacologia , Bortezomib , Transplante de Células , Ciclofosfamida/administração & dosagem , Citocinas/biossíntese , Citocinas/genética , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Doença Enxerto-Hospedeiro/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacologia , Pirazinas/administração & dosagem , Pirazinas/farmacologia , Organismos Livres de Patógenos Específicos , Baço/citologia , Condicionamento Pré-Transplante/métodos , Irradiação Corporal Total
14.
Chin Med J (Engl) ; 137(5): 533-546, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38321811

RESUMO

ABSTRACT: Lung cancer remains the most common cause of cancer death. Given the continued research into new drugs and combination therapies, outcomes in lung cancer have been improved, and clinical benefits have been expanded to a broader patient population. However, the overall cure and survival rates for lung cancer patients remain low, especially in metastatic cases. Among the available lung cancer treatment options, such as surgery, radiation therapy, chemotherapy, targeted therapies, and alternative therapies, immunotherapy has shown to be the most promising. The exponential progress in immuno-oncology research and recent advancements made in the field of immunotherapy will further increase the survival and quality of life for lung cancer patients. Substantial progress has been made in targeted therapies using tyrosine kinase inhibitors and monoclonal antibody immune checkpoint inhibitors with many US Food And Drug Administration (FDA)-approved drugs targeting the programmed cell death ligand-1 protein (e.g., durvalumab, atezolizumab), the programmed cell death-1 receptor (e.g., nivolumab, pembrolizumab), and cytotoxic T-lymphocyte-associated antigen 4 (e.g., tremelimumab, ipilimumab). Cytokines, cancer vaccines, adoptive T cell therapies, and Natural killer cell mono- and combinational therapies are rapidly being studied, yet to date, there are currently none that are FDA-approved for the treatment of lung cancer. In this review, we discuss the current lung cancer therapies with an emphasis on immunotherapy, including the challenges for future research and clinical applications.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/terapia , Qualidade de Vida , Nivolumabe , Imunoterapia , Terapia Combinada , Antígeno B7-H1/metabolismo
15.
Cancer Immunol Res ; 12(6): 731-743, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572955

RESUMO

We described previously a human natural killer (NK) cell population that upregulates PD-L1 expression upon recognizing and reacting to tumor cells or exposure to a combination of IL12, IL18, and IL15. Here, to investigate the safety and efficacy of tumor-reactive and cytokine-activated (TRACK) NK cells, human NK cells from umbilical cord blood were expanded, transduced with a retroviral vector encoding soluble (s) IL15, and further cytokine activated to induce PD-L1 expression. Our results show cryopreserved and thawed sIL15_TRACK NK cells had significantly improved cytotoxicity against non-small cell lung cancer (NSCLC) in vitro when compared with non-transduced (NT) NK cells, PD-L1+ NK cells lacking sIL15 expression (NT_TRACK NK), or NK cells expressing sIL15 without further cytokine activation (sIL15 NK cells). Intravenous injection of sIL15_TRACK NK cells into immunodeficient mice with NSCLC significantly slowed tumor growth and improved survival when compared with NT NK and sIL15 NK cells. The addition of the anti-PD-L1 atezolizumab further improved control of NSCLC growth by sIL15_TRACK NK cells in vivo. Moreover, a dose-dependent efficacy was assessed for sIL15_TRACK NK cells without observed toxicity. These experiments indicate that the administration of frozen, off-the-shelf allogeneic sIL15_TRACK NK cells is safe in preclinical models of human NSCLC and has potent antitumor activity without and with the administration of atezolizumab. A phase I clinical trial modeled after this preclinical study using sIL15_TRACK NK cells alone or with atezolizumab for relapsed or refractory NSCLC is currently underway (NCT05334329).


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Interleucina-15 , Células Matadoras Naturais , Neoplasias Pulmonares , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Antígeno B7-H1/metabolismo , Camundongos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular Tumoral , Camundongos SCID , Camundongos Endogâmicos NOD , Feminino
16.
Sci Immunol ; 9(95): eadl2171, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820140

RESUMO

Tumors evade attacks from the immune system through various mechanisms. Here, we identify a component of tumor immune evasion mediated by YTH domain-containing family protein 2 (YTHDF2), a reader protein that usually destabilizes m6A-modified mRNA. Loss of tumoral YTHDF2 inhibits tumor growth and prolongs survival in immunocompetent tumor models. Mechanistically, tumoral YTHDF2 deficiency promotes the recruitment of macrophages via CX3CL1 and enhances mitochondrial respiration of CD8+ T cells by impairing tumor glycolysis metabolism. Tumoral YTHDF2 deficiency promotes inflammatory macrophage polarization and antigen presentation in the presence of IFN-γ. In addition, IFN-γ induces autophagic degradation of tumoral YTHDF2, thereby sensitizing tumor cells to CD8+ T cell-mediated cytotoxicity. Last, we identified a small molecule compound that preferentially induces YTHDF2 degradation, which shows a potent antitumor effect alone but a better effect when combined with anti-PD-L1 or anti-PD-1 antibodies. Collectively, YTHDF2 appears to be a tumor-intrinsic regulator that orchestrates immune evasion, representing a promising target for enhancing cancer immunotherapy.


Assuntos
Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA , Animais , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/genética , Camundongos , Humanos , Evasão da Resposta Imune , Evasão Tumoral/imunologia , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/genética , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Feminino
17.
Cancer Res ; 83(20): 3327-3339, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37531223

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Although natural killer (NK) cells are garnering interest as a potential anticancer therapy because they selectively recognize and eliminate cancer cells, their use in treating solid tumors, including lung cancer, has been limited due to impediments to their efficacy, such as their limited ability to reach tumor tissues, the reduced antitumor activity of tumor-infiltrating NK cells, and the suppressive tumor microenvironment (TME). This comprehensive review provides an in-depth analysis of the cross-talk between the lung cancer TME and NK cells. We highlight the various mechanisms used by the TME to modulate NK-cell phenotypes and limit infiltration, explore the role of the TME in limiting the antitumor activity of NK cells, and discuss the current challenges and obstacles that hinder the success of NK-cell-based immunotherapy for lung cancer. Potential opportunities and promising strategies to address these challenges have been implemented or are being developed to optimize NK-cell-based immunotherapy for lung cancer. Through critical evaluation of existing literature and emerging trends, this review provides a comprehensive outlook on the future of NK-cell-based immunotherapy for treating lung cancer.

18.
Sci Immunol ; 8(81): eabn7993, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36897958

RESUMO

Spliced X-box-binding protein 1 (XBP1s) is an essential transcription factor downstream of interleukin-15 (IL-15) and AKT signaling, which controls cell survival and effector functions of human natural killer (NK) cells. However, the precise mechanisms, especially the downstream targets of XBP1s, remain unknown. In this study, by using XBP1 conditional knockout mice, we found that XBP1s is critical for IL-15-mediated NK cell survival but not proliferation in vitro and in vivo. Mechanistically, XBP1s regulates homeostatic NK cell survival by targeting PIM-2, a critical anti-apoptotic gene, which in turn stabilizes XBP1s protein by phosphorylating it at Thr58. In addition, XBP1s enhances the effector functions and antitumor immunity of NK cells by recruiting T-bet to the promoter region of Ifng. Collectively, our findings identify a previously unknown mechanism by which IL-15-XBP1s signaling regulates the survival and effector functions of NK cells.


Assuntos
Interleucina-15 , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Retroalimentação , Células Matadoras Naturais/metabolismo , Camundongos Knockout , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
19.
Blood Adv ; 7(20): 6225-6239, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37379267

RESUMO

The majority of patients with acute myeloid leukemia (AML) succumb to the disease or its complications, especially among older patients. Natural killer (NK) cells have been shown to have antileukemic activity in patients with AML; however, to our knowledge, primary NK cells armed with a chimeric antigen receptor (CAR) targeting antigens associated with AML as an "off-the-shelf" product for disease control have not been explored. We developed frozen, off-the-shelf allogeneic human NK cells engineered with a CAR recognizing FLT3 and secreting soluble interleukin-15 (IL-15) (FLT3 CAR_sIL-15 NK) to improve in vivo NK cell persistence and T-cell activation. FLT3 CAR_sIL-15 NK cells had higher cytotoxicity and interferon gamma secretion against FLT3+ AML cell lines when compared with activated NK cells lacking an FLT3 CAR or soluble IL-15. Frozen and thawed allogeneic FLT3 CAR_sIL-15 NK cells prolonged survival of both the MOLM-13 AML model as well as an orthotopic patient-derived xenograft AML model when compared with control NK cells. FLT3 CAR_sIL-15 NK cells showed no cytotoxicity against healthy blood mononuclear cells or hematopoietic stem cells. Collectively, our data suggest that FLT3 is an AML-associated antigen that can be targeted by frozen, allogeneic, off-the-shelf FLT3 CAR_sIL-15 NK cells that may provide a novel approach for the treatment of AML.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Células Matadoras Naturais , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
20.
J Hematol Oncol ; 15(1): 31, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313938

RESUMO

Natural killer (NK) cells are the predominant innate lymphoid cells that mediate anti-viral and anti-tumor immunity. NK cells arise from hematopoietic stem cells in the bone marrow (BM) and undergo lineage specification and maturation. Despite the importance of NK cells for innate immunity and the development of innovative cancer therapy, the detailed steps linking NK progenitor (NKP) cell development through immature NK (iNK) cells to mature NK (mNK) cells are poorly defined. In this study, we found that CD49b, NK1.1, and NKp46 are sequentially acquired during the development of murine Lin-CD122+ NKP cells. Introducing NKp46 allows us to propose a four-stage developmental model, wherein CD122+NK1.1-CD49b-NKp46- defines an NKP population, CD122+NK1.1-CD49b+NKp46- and CD122+NK1.1+CD49b-/+ NKp46- define iNK-a and iNK-b populations, respectively, and CD122+NK1.1+CD49b+NKp46+ defines an mNK population. These four NK cell populations are phenotypically distinct based on their expression of cell surface markers, transcription factors, and effector molecules. Using a differentiation assay ex vivo and adoptive transfer model in vivo, we confirmed that NK cell development follows our predicted four-stage model. Taken together, our findings establish two distinct populations of immature NK cells and define a model for mouse NK cell development.


Assuntos
Imunidade Inata , Integrina alfa2 , Animais , Diferenciação Celular , Células-Tronco Hematopoéticas , Humanos , Integrina alfa2/metabolismo , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA