Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 249: 118427, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325780

RESUMO

Porous organic polymers (POPs) present superior adsorption performance to steroid endocrine disruptors. However, the effective recovery and high cost have been a big limitation for their large-scale applications. Herein, magnetic azo-linked porous polymers (Fe3O4@SiO2/ALP-p) were designed and prepared in a green synthesis approach using low-price materials from phloroglucinol and pararosaniline via a diazo-coupling reaction under standard temperature and pressure conditions, which embedded with Fe3O4@SiO2 nanoparticles to form three-dimensional interlayer network structure with flexible-rigid interweaving. The saturated adsorption capacity to bisphenol-A (BPA) was 485.09 mg/g at 298 K, which increased by 1.4 times compared with ALP-p of relatively smaller mass density. This enhanced adsorption was ascribed to increment from surface adsorption and pore filling with 2.3 times of specific surface area and 2.6 times of pore volume, although the total organic functional groups decreased with Fe3O4@SiO2 amendment. Also, the adsorption rate increased by about 1.1 and 1.5-fold due to enhancement in the initial stage of surface adsorption and subsequent stage pore diffusion, respectively. Moreover, this adsorbent could be used in broad pH (3.0-7.0) and salinity adaptability (<0.5 mol/L). The loss of adsorption capacity and magnetic recovery were lower than 1.1% and 0.8% in each operation cycle because of the flexible-rigid interweave. This excellent performance was contributed by synergistic effects from physisorption and chemisorption, such as pore filling, electrostatic attraction, π-π stacking, hydrogen bonding, and hydrophobic interaction. This study offered a cost-effective, high-performing, and ecologically friendly material along with a green preparation method.


Assuntos
Compostos Benzidrílicos , Fenóis , Polímeros , Poluentes Químicos da Água , Adsorção , Fenóis/química , Poluentes Químicos da Água/química , Porosidade , Polímeros/química , Compostos Benzidrílicos/química , Química Verde/métodos , Compostos Azo/química , Reciclagem/métodos , Purificação da Água/métodos
2.
Environ Res ; 237(Pt 2): 116949, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625538

RESUMO

A three-dimensional bioelectrochemical system (3D-BES) with both electrocatalytic and biodegradation functions was designed and developed to enhance iodine-containing hormone removal from micro-polluted oligotrophic drinking water sources and to reduce energy consumption. Thyroxine (T4) removal efficiency was 99.0% in the 3D-BES amendment with TiO2@GAC as the particle electrodes, which was 20.5% higher than the total efficiency of single biodegradation (28.7%) plus electrochemical decomposition (49.8%). The high T4 removal efficiency was a result of biochemical synergistic degradation, enhancement of electron transfer and utilization, enrichment of functional microorganisms, and the expression of dehalogenation functional genes. The electron transfer was increased by 1.63 times in 3D-BES compared to the 2D-BES, which contributed to: (i) ∼17.8% enhancement of dehalogenation, (ii) 2.35 times enhancement of the attenuation rate, and (iii) 60% reduction in energy consumption. Moreover, the aggregation of microorganisms and the hydrophobic T4 onto TiO2@GAC shortened the transfer distance of matter and energy, which induced the degradation steps to be shortened and the toxic decay to be accelerated from T4 and its metabolites. These comprehensive functions also enhanced the 31.8% ATPase activity, 7.3% abundance of the functional reductive dehalogenation genera, and 52.3% dehalogenation genes expression for Pseudomonas, Ancylobacter, and Dehalogenimonas, which contributed to an increase in T4 removal. This work provides an environmental-friendly biochemical synergistic method for the detoxification of T4 polluted water.

3.
Environ Res ; 238(Pt 1): 117160, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717801

RESUMO

In order to design an optimal carbon peak and carbon neutralization pathway for the high-density building sector, a dynamic prediction model is established using system-dynamics coupled building life cycle carbon emission model (SD-BLCA) with consideration of future evolutionary trajectory and time constraints. The model is applied in Beijing using the SD-BLCA combined with scenario analysis and Monte Carlo methods to explore optimal trajectory for its building sector under 30-year timeframe. The results indicate that by increasing the proportion of renewable energy generation by 7% and retrofitting 60 million m2 of existing buildings, these two mature measures can offset the growth of carbon emissions and achieve the peak target by 2025. However, achieving carbon neutrality necessitates a shift from isolated technologies to a comprehensive net-zero emissions strategy. The study proposes a time roadmap that integrates a zero-carbon energy supply system and the carbon reduction measures of the whole life cycle. This strategy primarily relies on renewable sources to provide heat, power, and hydrogen, resulting in estimated reductions of 29.8 Mt, 28.1 Mt, and 0.7 Mt, respectively. Zero energy buildings, green buildings, and renovated buildings can reduce carbon emissions through their own energy-saving measures by 8.4, 18.2, and 11.8 kg/m2, respectively.


Assuntos
Dióxido de Carbono , Carbono , Pequim , Dióxido de Carbono/análise , Condições Sociais , China
4.
J Environ Manage ; 343: 118156, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244100

RESUMO

Pyrethroid insecticides are among urban parks' most widely used and harmful insecticides. The advanced prediction method is the key to studying the pollution and diffusion risk of plant conservation insecticides in parks. A two-dimensional advection-dispersion model was established for the North Lake of Cloud Mountain Park in the subhumid area of Hebei Province. The temporal and spatial distribution of lambda-cyhalothrin pollution required by plant growth in artificial lakes under different rainfall intensities and the time of water renewal after rainfall was simulated and predicted. According to the model efficiency (E: 0.98), mean absolute error (MAE: 0.016-0.064 cm), and root mean square error (RMSE: 0.014-0.041 cm), the prediction results showed that the model fits well. The results showed that the concentration of lambda-cyhalothrin in the artificial lake was positively correlated with the increase in rainfall intensity. Under the three scenarios of moderate rain, heavy rain, and rainstorm, the variation of total pollutants into the lake over time conformed to the first-order dynamic equation (R2>0.97), and the cumulative rates were 0.013 min-1, 0.019 min-1 and 0.022 min-1, respectively. Under light rain, the accumulation rate of lambda-cyhalothrin showed a double-linear relationship, which was in accordance with the second-order kinetic equation (R2>0.97). The rapid accumulation rate of early-stage rainfall was 0.0024 min-1, and the slow accumulation rate of late-stage rainfall was 0.0019 min-1. The human health risk assessment predicted by the simulation was lower than the hazard value (Rtgn(a-1): 9.65 E-11-1.12 E-10 a-1). However, the potential risk value to aquatic species was higher (RQ: 0.33-23.05). In addition, the increase in rainfall intensity has no significant effect on the acceleration of water renewal time. The two-dimensional dispersion model of pollutants driven by water dynamics provided relevant examples for evaluating the impact of runoff on pesticide scour in parks and supplied scientific support for improving the management of artificial lakes in urban parks.


Assuntos
Poluentes Ambientais , Inseticidas , Piretrinas , Poluentes Químicos da Água , Humanos , Inseticidas/análise , Lagos , Monitoramento Ambiental/métodos , Água , Chuva , China , Movimentos da Água , Poluentes Químicos da Água/análise
5.
Environ Res ; 206: 112601, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973200

RESUMO

In order to effectively remove refractory bisphenol A (BPA) from water, a novel nitrogen doped organic porous functional azo linked polymer (ALP-p) was designed and prepared according to the physicochemical characteristics of propane linked to two phenol hydroxyl groups. This ALP-p was synthesized with 98.5% yield, from pararosaniline and phloroglucinol, via the diazo coupling reaction to produce multiple adsorption functional groups of benzene ring, hydroxyl group and azo group. This functional material showed high adsorption capacity of 357.8 mg/g for 50 mg/L BPA, at 20 °C. The adsorption kinetics and isotherms were described by the pseudo-second-order and Langmuir model, respectively. The major adsorption mechanisms were attributed to the high specific surface area (259.8 m2/g) and pore volume (0.56 cm3/g) related surface adsorption and pore diffusion through porous stereoscopic stacking cavity anchorage. The functional group from the three-dimensional skeleton structures of ALP-p for BPA anchoring endowed chemisorption via π-π interaction between benzene rings and hydrogen-bonding (O-H⋯O, C-H⋯N, C-H⋯O and C-H⋯C) with the hydrogen atom of benzene ring, -OH from BPA and -OH, NN from ALP-p, respectively. The coexisting organic pollutants and alkali environment posed a negative effect on adsorption, while salinity had no significant effect on the process. The adsorption capacity and recovery of ALP-p were >93.5% and 81.6% after five cycles of operation.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Compostos Benzidrílicos , Cinética , Fenóis/análise , Polímeros , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 323: 116070, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113292

RESUMO

The quality of groundwater along rivers is greatly affected by long-term infiltration from surface water, especially reclaimed water-receiving rivers. To predict the degree of influence of contaminated river water on groundwater quality, the spatiotemporal distribution and migration evolution prediction of benzo[a]pyrene (B(a)P) was monitored and simulated by Hydrus-coupled Groundwater Modeling Systems (GMS) model in terms of reclaimed water-receiving Liangshui River. The prediction results indicated the goodness-of-fit of this coupled model, according to the model efficiency (E: 0.78-0.93), the mean absolute error (MAE: 0.01-0.32 m) and the root-mean-square error (RMSE: 0.06-0.35 m). The vertical infiltration rate of B(a)P in the vadose zone was 0.102 m-1, which was only 0.73% that of water. B(a)P penetrated the 16 m depth vadose zone for 63 years owing to the attenuation function of adsorption and biodegradation, with contribution ratios of 78.4% and 19.3%, respectively. However, once B(a)P intersects with groundwater, the migration of B(a)P is dominated by horizontal migration due to downward movement along the groundwater flow direction. The migration rate of B(a)P in groundwater was 6.65 m/y in the horizontal direction, which was 2.42 and 16.22 times higher than the dispersion rate in the longitudinal and vertical directions, respectively. The spatiotemporal distribution indicated that the B(a)P concentration decreased with the crow-fly distance from river with attenuation rate constants of 1.19 × 10-4, 3.05 × 10-4, and 3.67 × 10-3 m-1 over horizontal, longitudinal, and vertical direction, respectively, which were negatively correlated with migration rate. However, the B(a)P content increased over the extension of infiltration time with an accumulation rate of 7.3 × 10-2 d-1. The migration and accumulation of B(a)P induced potential health risks to groundwater-based drinking water safety, which resulted in the groundwater safety utilization range decreasing from 450 m, 283 m, and 20.1 m-583 m, 338 m, and 28.2 m far from the river over the horizontal, longitudinal, and vertical directions, respectively, 20 years later. This study provides a numerical modeling solution for the viable spatiotemporal evolution of B(a)P in groundwater and an effective decision-making tool for the safe utilization of groundwater as drinking water.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Benzo(a)pireno , China , Monitoramento Ambiental/métodos , Rios , Poluentes Químicos da Água/análise
7.
J Environ Sci (China) ; 95: 73-81, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32653195

RESUMO

Biogenic volatile organic compounds (BVOCs) have significant effects on atmospheric chemistry, ozone formation and secondary organic aerosol formation. Considering few investigations about BOVCs emissions in north China where is facing serious air pollution in recent years, emissions of various BVOCs from 24 dominant forest species in Beijing were measured from June to September in 2018, using a dynamic headspace sampling method. More than one hundred BVOCs in the collected samples were identified by using an automatic thermal desorption-gas chromatography/mass spectrometry, and their emission rates based on leaf biomass were calculated. Isoprene and monoterpenes were verified to be the dominant BVOCs emitted from the tree species, accounting for more than 50% of the total BVOCs. Generally, broad-leaved species displayed high isoprene emission rates, especially the Platanus occidentalis (21.36 µg/(g⋅hr)), Robinia pseudoacacia (11.55 µg/(g⋅hr)), and Lonicera maackii (9.17 µg/(g⋅hr)), while coniferous species emitted high rates of monoterpenes, such as Platycladus orientalis (27.18 µg/(g⋅hr)), Pinus griffithii (23.11 µg/(g⋅hr)), and Pinus armandii (7.42 µg/(g⋅hr)). High emission rates of monoterpenes from the broad-leaved species of Buxus megistophylla (13.07 µg/(g⋅hr)) and Ligustrum vicaryi (5.74 µg/(g⋅hr)), and high isoprene emission rate from the coniferous tree of Taxus cuspidata (5.86 µg/(g⋅hr)) were also observed. The emission rates of sesquiterpenes from each tree were usually 10-100 times smaller than those of isoprene and monoterpenes. Additionally, relatively high emission rates of oxygenated volatile organic compounds and other alkenes than isoprene and monoterpenes were also found for several tree species.


Assuntos
Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Pequim , China , Florestas
8.
J Environ Manage ; 246: 647-657, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31212218

RESUMO

In this long-term field study, to restore a dried river ecosystem, reclaimed water was used as a supplementary water source. The main aim of this study was to investigate the accumulation and migration potential of EDCs in groundwater during long-term utilization of reclaimed water and the changes in microbial community during the removal of EDCs. A long-term field study was conducted in order to ascertain the temporal and spatial distribution of four selected endocrine-disrupting chemicals (EDCs) in an underground aquifer in the Chaobai watershed, where reclaimed water is the primary water source. Anew, the microbial community structure at different groundwater depths, along with related environmental factors were also determined. Based on the results obtained from this long-term study, it was found that the EDCs in the surface water of the Chaobai river have entered a depth of 80 m in the groundwater aquifers, within a distance of 360 m from the river. The vertical profiles of the concentrations of bisphenol A (BPA), 4-nonylphenol (NP), estrone (E1), and estriol (E3) decreased significantly from the surface to different groundwater depths with first-order attenuation rates of 0.0416, 0.0343, 0.0498, and 0.0173 m-1. The aquifer depth, water temperature, conductivity, and coexisting anions correlated well with the distribution of EDCs in groundwater.


Assuntos
Disruptores Endócrinos , Água Subterrânea , Microbiota , Poluentes Químicos da Água , Monitoramento Ambiental , Rios , Água
9.
Environ Geochem Health ; 41(4): 1767-1776, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28550602

RESUMO

The recovery of phosphate from human urine has been considered as one of the most attractive benefits of urine source separation because P is an essential but limited macronutrient. This study investigated the approach to modify wood waste biochar via metal oxides aiming to recover phosphate from human urine to produce a value-added biochar. Results showed the phosphate removal ability was enhanced for the modified biochar pre-treated in modification solutions of MgCl2, AlCl3, CaCl2 and FeCl3, respectively, while natural biochar released phosphate to urine. Among the tested biochar, Mg-biochar presented the best capacity for phosphate removal from the hydrolyzed urine, reaching 118 mgP g-1 at a MgCl2 concentration of 2.3 M. However, higher MgCl2 concentration would not further increase the adsorption capacity. Fitting of the adsorption kinetics and isotherms indicated that the phosphate removal process was probably controlled by multiple mechanisms. Both the experimental and fitting results confirmed that the content of Mg oxides was the key factor determining the adsorption rate and capacity of phosphate on Mg-biochar. pH ranges of 7-9 and the ammonium concentration higher than 108 mgN L-1 enhanced the phosphate adsorption capacity. As such, the Mg-biochar was more favored for the treatment of hydrolyzed urine rather than fresh urine with acidic pH and lower concentration of ammonium. Further calculations were carried out using the Langmuir model to evaluate the removal of phosphate and the product. Results indicate that it is an effective technique to use Mg-biochar for phosphate removal from hydrolyzed urine and it yields phosphate-enriched biochar products.


Assuntos
Carvão Vegetal/química , Óxido de Magnésio/química , Fosfatos/isolamento & purificação , Urina/química , Madeira/química , Adsorção , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Metais/química , Modelos Teóricos , Óxidos/química , Fosfatos/química , Resíduos
10.
J Cell Biochem ; 119(4): 3510-3518, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29144001

RESUMO

Glycogen synthase kinase-3 beta (GSK-3ß) is involved in multiple signaling pathways. Consistent with its critical roles in normal cells, abnormalities in GSK-3ß activity have been implicated in diabetes, heart disease, Parkinson disease, and Alzheimer's disease. In this study, a series of new scaffolds of small molecule inhibitors of GSK-3ß were identified by virtual screening and bioassay. Candidates that adhere to drug-like criteria from a virtual library of compounds were tested using computational docking studies. Twenty selected compounds were tested, which led to the discovery of two hits. Compound 14 (IC50 = 8.48 µM) and compound 19 (IC50 = 2.19 µM) were identified with high affinity. Molecular dynamics (MD) simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the binding modes and energetics of GSK-3ß inhibitors. The detailed analysis of molecular dynamics results shows that Ile62, Val70, Tyr134, and Leu188 in GSK-3ß are key residues responsible to the binding of compound 14 and compound 19. Importantly, our results also validated this combined virtual screening and biophysical technique approach to discovery kinase inhibitors, which may be applied for future inhibitor discovery work for GSK-3ß.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Estrutura Secundária de Proteína
11.
J Environ Manage ; 217: 100-109, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29597106

RESUMO

The main aim of this study was to remove nitrogen compounds from reclaimed water and reuse the water in semi-arid riverine lake systems. In order to assess the nitrogen removal efficiencies in different natural environments, laboratory scale column experiments were performed using sterilized soil (SS), silty clay (SC), soil with submerged plant (SSP) and biochar amendment soil (BCS). The initial concentration of NO3--N and the flow rate was maintained constant at 15 mg L-1 and 0.6 ±â€¯0.1 m d-1, respectively. Among the tested columns, both SSP and BCS were able to achieve NO3--N levels <0.2 mg L-1 in the treated reclaimed water. The results from bacterial community structure analysis, using 454 pyrosequencing of 16s rRNA genes, showed that the dominant denitrifier was Bacillus at the genera level.


Assuntos
Desnitrificação , RNA Ribossômico 16S , Nitrogênio , Solo , Microbiologia do Solo , Água , Microbiologia da Água
12.
J Environ Sci (China) ; 64: 51-61, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29478661

RESUMO

This study investigated 17α-ethynylestradiol (EE2) biodegradation process and primary metabolic pathways associated with community structures of microorganism during groundwater recharge using reclaimed water. The attenuation rate is 1.58 times higher in wetting and drying alternative recharge (WDAR) than in continual recharge (CR). The primary biotransformation pathways of EE2 in WDAR system began with the oxidation of C-17 on ring D to form a ketone group, and D-ring was subsequently hydroxylated and cleaved. In the CR system, the metabolic pathway changed from the oxidation of C-17 on ring D to hydroxylation of C-4 on ring A, and ring A or B subsequently cleaved; this transition was related to DO, and the microbial community structure. Four hundred fifty four pyrosequencing of 16s rRNA genes indicated that the bacterial communities in the upper layer of the WDAR system were more diverse than those found in the bottom layer of the CR system; this result was reversed for archaea. Unweighted UniFrac and taxonomic analyses were conducted to relate the change in bacterial community structure to the metabolic pathway. Microorganism community diversity and structure were related to the concentrations of dissolved oxygen, EE2 and its intermediates in the system. Five known bacterial classes and one known archaeal class, five major bacterial genera and one major archaeal genus might be involved in EE2 degradation. The findings of this study provide an understanding of EE2 biodegradation in groundwater recharge areas under different recharging modes and can facilitate the prediction of the fate of EE2 in underground aquifers.


Assuntos
Etinilestradiol/metabolismo , Água Subterrânea/microbiologia , Rios/microbiologia , Poluentes Químicos da Água/metabolismo , Archaea/fisiologia , Bactérias/metabolismo , Etinilestradiol/análise , Água Subterrânea/química , Rios/química , Microbiologia da Água , Poluentes Químicos da Água/análise
13.
J Environ Sci (China) ; 31: 154-63, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968269

RESUMO

Endocrine disrupting chemical (EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17ß-estradiol (E2), 17α-ethinylestradiol (EE2) and bisphenol A (BPA). The three recharge columns were operated under the conditions of continual sterilization recharge (CSR), continual recharge (CR), and wetting and drying alternative recharge (WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR>CR>CSR system and E2>EE2>BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m(-1) for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature. In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation.


Assuntos
Biodegradação Ambiental , Disruptores Endócrinos/química , Água Subterrânea/química , Rios/química , Águas Residuárias/química , Adsorção , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Filogenia , Reciclagem , Eliminação de Resíduos Líquidos
14.
Int J Biol Macromol ; 270(Pt 1): 132303, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744366

RESUMO

In order to solve ecological remediation issues for abandoned mines with steep slopes, a kind of hydrogels with high cohesion and water-retaining were designed by inorganic mineral skeleton combining with polymeric organic network cavities. This eco-friendly hydrogel (MFA/HA-g-p(AA-co-AM)) was prepared with acrylic acid (AA)-acrylamide (AM) as network, which was grafted with humic acids (HA) as network binding point reinforcement skeleton and polar functional group donors, KOH-modified fly ash (MFA) as internal supporter. The maximum water absorption capacities were 1960 g/g for distilled water, which followed the pseudo-second-order model. This super water absorption was attributed to the first stage of 62 % fast absorption due to the high specific surface area, pore volume and low osmotic pressure, moreover, the multiple hydrophilic functional groups and network structure swell contributed to 36 % of the second stage slow adsorption. In addition, the pore filling of water in mesoporous channels contributed the additional 2 % water retention on the third stage. The high saline-alkali resistance correlated with the electrostatic attraction with MFA and multiple interactions with oxygen-containing functional groups in organic components. MFA and HA also enhanced the shear strength and fertility retention properties. After 5 cycles of natural dehydration and reabsorption process, these excellent characteristics of reusability and water absorption capacity kept above 97 %. The application of 0.6 wt% MFA/HA-g-p(AA-co-AM) at 15° slope could improve the growth of ryegrass by approximately 45 %. This study provides an efficient and economic superabsorbent material for ecological restoration of abandoned mines with steep slopes.


Assuntos
Hidrogéis , Resistência ao Cisalhamento , Hidrogéis/química , Recuperação e Remediação Ambiental/métodos , Substâncias Húmicas , Adsorção , Cinza de Carvão/química , Água/química , Nutrientes/química , Acrilatos/química
15.
Chemosphere ; 352: 141343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331269

RESUMO

Dimethyl phthalate (DMP) is widely used as plasticizer, and this kind of plastic industry wastewater is refractory due to the complex chemical structure and endocrine disrupting property. In order to effectively degrade and mineralize DMP contaminated wastewater, a heterogeneous UVC/VUV-Fenton catalyst system was designed with the amendment of targeted design catalyst Fe3O4@CM-ß-CD/rGO with core-shell like structure covered with loose convex folded lamellar. The optimum removal and mineralization efficiency of DMP were 98.6 % and 62.8 % in 30 min with 150 mg L-1 Fe3O4@CM-ß-CD/rGO and 8 mmol L-1 H2O2. This efficient and fast removal were attributed to a variety of photocatalytic oxidative active species •OH, •O2- and h+ with 59.6%, 29.1% and 9.9% contribution ratio, which mainly took effect on benzene ring open and side-chain fracture by oxidative, hydrolysis and hydrogen substitution determined by the rupture energy requirement from chemical bond in DMP. The target function of CM-ß-CD in catalyst controlled the photo-electron generation rate and shorten mass transfer distance by the cladding lamellar, moreover, rGO accelerated the redox between Fe (II) and Fe (III) and electron transfer. The catalytic recovery and removal to DMP kept above 90 % after five recycles. This study provided an excellent performance catalyst and an effective photo-Fenton approach and for the treatment of endocrine disrupting wastewater.


Assuntos
Peróxido de Hidrogênio , Ácidos Ftálicos , beta-Ciclodextrinas , Peróxido de Hidrogênio/química , Águas Residuárias , Catálise
16.
Water Sci Technol ; 67(11): 2399-405, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23752369

RESUMO

The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Polissacarídeos/análise , Pressão , Proteínas/análise , Solubilidade , Poluentes da Água/análise
17.
Bioresour Technol ; 371: 128616, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640819

RESUMO

In order to reduce the pyrolysis temperature during the process of directional conversion from kitchen waste (KW) into aromatic biochar, a kind of catalyst was prepared with carbon material coated with tri-metallic oxide (Fe2O3, MgO and Al2O3) combining with sulfonic acid groups (CMO@SA) according to KW compositions. The aromaticity of KW pyrolysis biochar (KWB) increased when the temperature ranged from 170 to 210 °C. The catalytic pyrolysis temperature of KW reduced from 500 to 190 °C for biochar generation with similar aromaticity due to amendment of CMO@SA. The maximum adsorption capacity of catalytic pyrolysis KWB was 160.23 mg/g for dyeing wastewater, which was equivalent to biochar generated at 500 °C. The decrease of pyrolysis temperature was attributed to the reduction of bonds fracture activation-energy among CH, CC and CO under the catalytic function. The catalytic activity and recovery of CMO@SA kept at 92 % and 90 % after five recycle.


Assuntos
Carbono , Pirólise , Temperatura , Carvão Vegetal/química , Adsorção , Alcanossulfonatos
18.
Chemosphere ; 332: 138879, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169086

RESUMO

Long-term infiltration from river receiving reclaimed water will pose potential risk to vadose zone and groundwater because of the persistent and highly toxic contaminants. In order to predict the spatio-temporal distribution of ecological and health risk, a coupled model of HYDRUS-GMS combined risk quotient was proposed. The model can accurately predict water flow, solute transport and risk with model due to the acceptable efficiency (E:0.99), mean absolute error (MAE:0.031 m) and root-mean-square error (RMSE:0.039 m). The content of galaxolide (HHCB), a typical pharmaceutical and personal care product with hydrophobicity and refractory in reclaimed water, increased in vadose zone at an accumulative rate of 6.1 ng g-1 year-1 with infiltration time extension. The accumulation will pose ecological risk after 53 years infiltration. The potential risk will extent to groundwater once penetrate through vadose zone, and mainly diffuse along groundwater flow direction. The migration rate along horizontal direction of groundwater flow is 0.03396 m d-1, which is 9.7 and 1.1 times higher than longitudinal and vertical rates due to the variation of driving force in three directions. The migration rate of HHCB was 2.6% of groundwater flow due to hydrophobicity (LogKow = 5.9). The complete biochemical decomposition of HHCB will take approximately 0.38 year through metabolite within 182.65 m distance. The persistence was attributed to the high chronic toxicity and the low bio-availability. The major biochemical metabolism of HHCB was enzymatic hydrolysis, ring opening, decarboxylation, which was decomposed and carbonized within approximately 0.38 year after 182.65 m migration distance. This study provided a new approach to predict the spatio-temporal risk distribution due to reclaimed water reuse.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Rios , Água , Água Subterrânea/química , Simulação por Computador , Poluentes Químicos da Água/análise
19.
Bioresour Technol ; 384: 129286, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37277004

RESUMO

A novel valorization approach of food waste via staged fermentation and chain elongation was proposed. Food waste was moderately saccharified, saccharification effluent was fermented to produce ethanol and saccharification residue was hydrolyzed and acidified to produce VFAs. The yeast fermentation effluent and hydrolytic acidification effluent were sequentially performed for chain elongation. Ethanol and volatile fatty acids from staged fermentation were suitable for direct chain elongation and the n-caproate production was 184.69 mg COD/g VS when yeast fermentation effluent to hydrolytic acidification effluent ratio was 2:1. Food waste was deeply utilized with an organic conversion of 80%. The relative abundance of Clostridium sensu stricto increased during chain elongation, which might be responsible for the improvement of n-caproate production. A profit of 10.65 USD/t was estimated for chain elongation of food waste staged fermentation effluent. This study provided a new technology to achieve advanced treatment and high-valued utilization of food waste.


Assuntos
Alimentos , Eliminação de Resíduos , Fermentação , Caproatos , Saccharomyces cerevisiae , Ácidos Graxos Voláteis , Reatores Biológicos , Etanol
20.
J Hazard Mater ; 452: 131302, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031670

RESUMO

Biological dehalogenation degradation was an important detoxification method for the ecotoxicity and teratogenic toxicity of fluorocorticosteroids (FGCs). The functional strain Acinetobacter pittii C3 can effectively biodegrade and defluorinate to 1 mg/L Triamcinolone acetonide (TA), a representative FGCs, with 86 % and 79 % removal proportion in 168 h with the biodegradation and detoxification kinetic constant of 0.031/h and 0.016/h. The dehalogenation and degradation ability of strain C3 was related to its dehalogenation genomic characteristics, which manifested in the functional gene expression of dehalogenation, degradation, and toxicity tolerance. Three detoxification mechanisms were positively correlated with defluorination pathways through hydrolysis, oxidation, and reduction, which were regulated by the expression of the haloacid dehalogenase (HAD) gene (mupP, yrfG, and gph), oxygenase gene (dmpA and catA), and reductase gene (nrdAB and TgnAB). Hydrolysis defluorination was the most critical way for TA detoxification metabolism, which could rapidly generate low-toxicity metabolites and reduce toxic bioaccumulation due to hydrolytic dehalogenase-induced defluorination. The mechanism of hydrolytic defluorination was that the active pocket of hydrolytic dehalogenase was matched well with the spatial structure of TA under the adjustment of the hydrogen bond, and thus induced molecular recognition to promote the catalytic hydrolytic degradation of various amino acid residues. This work provided an effective bioremediation method and mechanism for improving defluorination and detoxification performance.


Assuntos
Acinetobacter , Hidrolases , Hidrólise , Hidrolases/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Oxirredução , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA