Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nature ; 601(7894): 623-629, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875674

RESUMO

Breast cancers are complex ecosystems of malignant cells and the tumour microenvironment1. The composition of these tumour ecosystems and interactions within them contribute to responses to cytotoxic therapy2. Efforts to build response predictors have not incorporated this knowledge. We collected clinical, digital pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast tumours from 168 patients treated with chemotherapy with or without HER2 (encoded by ERBB2)-targeted therapy before surgery. Pathology end points (complete response or residual disease) at surgery3 were then correlated with multi-omic features in these diagnostic biopsies. Here we show that response to treatment is modulated by the pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in predictive models using machine learning. The degree of residual disease following therapy is monotonically associated with pre-therapy features, including tumour mutational and copy number landscapes, tumour proliferation, immune infiltration and T cell dysfunction and exclusion. Combining these features into a multi-omic machine learning model predicted a pathological complete response in an external validation cohort (75 patients) with an area under the curve of 0.87. In conclusion, response to therapy is determined by the baseline characteristics of the totality of the tumour ecosystem captured through data integration and machine learning. This approach could be used to develop predictors for other cancers.


Assuntos
Neoplasias da Mama , Ecossistema , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Genômica , Humanos , Aprendizado de Máquina , Terapia Neoadjuvante , Microambiente Tumoral
2.
Crit Rev Food Sci Nutr ; 63(28): 9379-9391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35482938

RESUMO

Aberrant neurogenesis is a major factor in psychiatric and neurological disorders that have significantly attracted the attention of neuroscientists. Curcumin is a primary constituent of curcuminoid that exerts several positive pharmacological effects on aberrant neurogenesis. First, it is important to understand the different processes of neurogenesis, and whether their dysfunction promotes etiology as well as the development of many psychiatric and neurological disorders; then investigate mechanisms by which curcumin affects neurogenesis as an active participant in pathophysiological events. Based on scientometric studies and additional extensive research, we explore the mechanisms by which curcumin regulates adult neurogenesis and in turn affects psychiatric diseases, i.e., depression and neurological disorders among them traumatic brain injury (TBI), stroke, Alzheimer's disease (AD), Gulf War Illness (GWI) and Fragile X syndrome (FXS). This review aims to elucidate the therapeutic effects and mechanisms of curcumin on adult neurogenesis in various psychiatric and neurological disorders. Specifically, we discuss the regulatory role of curcumin in different activities of neural stem cells (NSCs), including proliferation, differentiation, and migration of NSCs. This is geared toward providing novel application prospects of curcumin in treating psychiatric and neurological disorders by regulating adult neurogenesis.


Assuntos
Doença de Alzheimer , Curcumina , Doenças do Sistema Nervoso , Humanos , Adulto , Curcumina/farmacologia , Curcumina/uso terapêutico , Neurogênese , Doenças do Sistema Nervoso/tratamento farmacológico , Diferenciação Celular , Doença de Alzheimer/tratamento farmacológico
3.
J Neurosci ; 37(12): 3294-3310, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28235894

RESUMO

Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease.SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be suitable for clinical study as a potential treatment for diseases involving photoreceptor degeneration.


Assuntos
Regeneração Nervosa/fisiologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/fisiopatologia , Tamoxifeno/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos da radiação , Fármacos Neuroprotetores/administração & dosagem , Células Fotorreceptoras de Vertebrados/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Degeneração Retiniana/patologia , Resultado do Tratamento
4.
J Neurosci ; 36(9): 2827-42, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26937019

RESUMO

Microglia, the principal resident immune cell of the CNS, exert significant influence on neurons during development and in pathological situations. However, if and how microglia contribute to normal neuronal function in the mature uninjured CNS is not well understood. We used the model of the adult mouse retina, a part of the CNS amenable to structural and functional analysis, to investigate the constitutive role of microglia by depleting microglia from the retina in a sustained manner using genetic methods. We discovered that microglia are not acutely required for the maintenance of adult retinal architecture, the survival of retinal neurons, or the laminar organization of their dendritic and axonal compartments. However, sustained microglial depletion results in the degeneration of photoreceptor synapses in the outer plexiform layer, leading to a progressive functional deterioration in retinal light responses. Our results demonstrate that microglia are constitutively required for the maintenance of synaptic structure in the adult retina and for synaptic transmission underlying normal visual function. Our findings on constitutive microglial function are relevant in understanding microglial contributions to pathology and in the consideration of therapeutic interventions that reduce or perturb constitutive microglial function. SIGNIFICANCE STATEMENT: Microglia, the principal resident immune cell population in the CNS, has been implicated in diseases in the brain and retina. However, how they contribute to the everyday function of the CNS is unclear. Using the model of the adult mouse retina, we examined the constitutive role of microglia by depleting microglia from the retina. We found that in the absence of microglia, retinal neurons did not undergo overt cell death or become structurally disorganized in their processes. However, connections between neurons called synapses begin to break down, leading to a decreased ability of the retina to transmit light responses. Our results indicate that retinal microglia contribute constitutively to the maintenance of synapses underlying healthy vision.


Assuntos
Microglia/fisiologia , Neurônios/fisiologia , Retina/citologia , Sinapses/fisiologia , Animais , Morte Celular/genética , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Nistagmo Optocinético/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Sinapses/genética , Transtornos da Visão/genética , Transtornos da Visão/patologia , Transtornos da Visão/fisiopatologia , Vias Visuais/fisiologia
5.
Glia ; 64(9): 1479-91, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27314452

RESUMO

Retinitis pigmentosa (RP), a disease characterized by the progressive degeneration of mutation-bearing photoreceptors, is a significant cause of incurable blindness in the young worldwide. Recent studies have found that activated retinal microglia contribute to photoreceptor demise via phagocytosis and proinflammatory factor production, however mechanisms regulating these contributions are not well-defined. In this study, we investigate the role of CX3CR1, a microglia-specific receptor, in regulating microglia-mediated degeneration using the well-established rd10 mouse model of RP. We found that in CX3CR1-deficient (CX3CR1(GFP/GFP) ) rd10 mice microglial infiltration into the photoreceptor layer was significantly augmented and associated with accelerated photoreceptor apoptosis and atrophy compared with CX3CR1-sufficient (CX3CR1(GFP/+) ) rd10 littermates. CX3CR1-deficient microglia demonstrated increased phagocytosis as evidenced by (1) having increased numbers of phagosomes in vivo, (2) an increased rate of phagocytosis of fluorescent beads and photoreceptor cellular debris in vitro, and (3) increased photoreceptor phagocytosis dynamics on live cell imaging in retinal explants, indicating that CX3CR1 signaling in microglia regulates the phagocytic clearance of at-risk photoreceptors. We also found that CX3CR1 deficiency in retinal microglia was associated with increased expression of inflammatory cytokines and microglial activation markers. Significantly, increasing CX3CL1-CX3CR1 signaling in the rd10 retina via exogenous intravitreal delivery of recombinant CX3CL1 was effective in (1) decreasing microglial infiltration, phagocytosis and activation, and (2) improving structural and functional features of photoreceptor degeneration. These results indicate that CX3CL1-CX3CR1 signaling is a molecular mechanism capable of modulating microglial-mediated degeneration and represents a potential molecular target in therapeutic approaches to RP. GLIA 2016;64:1479-1491.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Microglia/metabolismo , Fagocitose/fisiologia , Células Fotorreceptoras/metabolismo , Retinose Pigmentar/metabolismo , Animais , Modelos Animais de Doenças , Macrófagos/metabolismo , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Receptores de Quimiocinas/metabolismo , Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Nanotechnology ; 27(3): 035707, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26656241

RESUMO

Au/TiO2 mesocrystals (Au/TMCs) were synthesized via a template-free solvothermal approach, followed with in situ photoreduction of gold chloride tetrahydrate for deposition of Au nanoparticles (AuNPs). The microstructure and components of the photocatalysts were characterized with various techniques. The results indicated that the AuNPs selectively anchored on the (101) facet of TiO2 mesocrystals (TMCs). More interestingly, the strong interactions occurred between AuNP and TMC support, due to the formation of a close Schottky heterointerface, combined with Ti-O-Au chemical bonds partially formed. Unexpectedly, it was found that the AuNPs typically aligned with their [111] direction, parallelling to the [101] direction of TMC in many cases. Au/TMCs exhibited high selectivity and activity for the transformation of nitroarenes to corresponding azoxyarenes, which could be attributed to not only the plasmonic effect of AuNPs and the unique superstructure of TMC, but also the highly strong interaction between AuNPs and TMCs through the close Schottky heterointerface.

7.
Adv Exp Med Biol ; 854: 73-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427396

RESUMO

Age-related retinal diseases, such as age-related macular degeneration (AMD) and glaucoma, contain features of chronic retinal inflammation that may promote disease progression. However, the relationship between aging and neuroinflammation is unclear. Microglia are long-lived, resident immune cells of the retina, and mediate local neuroinflammatory reactions. We hypothesize that aging changes in microglia may be causally linked to neuroinflammatory changes underlying age-dependent retinal diseases. Here, we review the evidence for (1) how the retinal microglial phenotype changes with aging, (2) the factors that drive microglial aging in the retina, and (3) aging-related changes in microglial gene expression. We examine how these aspects of microglial aging changes may relate to pathogenic mechanisms of immune dysregulation driving the progression of age-related retinal disease. These relationships can highlight microglial aging as a novel target for the prevention and treatment of retinal disease.


Assuntos
Envelhecimento , Degeneração Macular/metabolismo , Microglia/metabolismo , Retina/metabolismo , Animais , Progressão da Doença , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Microglia/patologia , Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transcriptoma
8.
J Neurosci ; 34(10): 3793-806, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24599476

RESUMO

Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking. To address this, we investigated the involvement and role of translocator protein (TSPO), a biomarker of microglial and astrocyte gliosis in brain degeneration, in the context of retinal inflammation. Here, we find that TSPO is acutely and specifically upregulated in retinal microglia in separate mouse models of retinal inflammation and injury. Concomitantly, its endogenous ligand, diazepam-binding inhibitor (DBI), is upregulated in the macroglia of the mouse retina such as astrocytes and Müller cells. In addition, we discover that TSPO-mediated signaling in microglia via DBI-derived ligands negatively regulates features of microglial activation, including reactive oxygen species production, TNF-α expression and secretion, and microglial proliferation. The inducibility and effects of DBI-TSPO signaling in the retina reveal a mechanism of coordinated macroglia-microglia interactions, the function of which is to limit the magnitude of inflammatory responses after their initiation, facilitating a return to baseline quiescence. Our results indicate that TSPO is a promising molecular marker for imaging inflammatory cell activation in the retina and highlight DBI-TSPO signaling as a potential target for immodulatory therapies.


Assuntos
Comunicação Celular/fisiologia , Microglia/metabolismo , Receptores de GABA/fisiologia , Retina/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Astrócitos/metabolismo , Células Cultivadas , Feminino , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Receptores de GABA/genética
9.
Curr Res Food Sci ; 8: 100665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188651

RESUMO

Starch is a major dietary carbohydrate, but its digestion properties need to be improved. Mesona chinensis polysaccharides (MCPs) had a unique function in improving the flocculation performance of starch. This study investigated the effects of adding Mesona chinensis polysaccharide extracted from wet fresh and dry plants with one-year storage, namely WMCP and DMCP, on the physicochemical properties and digestion kinetics of corn starch(CS). The composition analysis showed both WMCP and DMCP were an acidic heteropolysaccharide rich in galacturonic acid and galactose, whereas showed different average main fraction molecular weights (Mw) of 47.36 kDa and 42.98 kDa, respectively. In addition, WMCP showed higher yield, purity and better physicochemical properties to CS than DWCP. Thermal analysis showed WMCP decreased more gelatinization temperatures and enthalpy of CS, and increased more freeze-thaw stability, water holding capacity, and textural parameters of CS gels than DMCP. Structural analysis revealed WMCP induced more changes in crystallinity, short-range order, and microstructure of CS, which inhibited retrogradation than DMCP. In vitro digestion assays demonstrated WMCP addition significantly increased higher resistant starch content by altering starch-starch and starch-MCP interactions than DWCP. Overall, MCPs addition beneficially modulated CS properties and digestion kinetics, providing a novel way to improve starch functionalities. Moreover, WMCP had more advantages to be chosen to form hydrocolloid with CS than DMCP.

10.
Adv Healthc Mater ; 13(16): e2302676, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38279911

RESUMO

Natural blood vessels have completed functions, including elasticity, compliance, and excellent antithrombotic properties because of their mature structure. To replace damaged blood vessels, vascular grafts should perform these functions by simulating the natural vascular structures. Although the structures of natural blood vessels are thoroughly explored, constructing a small-diameter vascular graft that matches the mechanical and biological properties of natural blood vessels remains a challenge. A hierarchical vascular graft is fabricated by Electrospinning, Braiding, and Thermally induced phase separation (EBT) processes, which could simulate the structure of natural blood vessels. The internal electrospun structure facilitates the adhesion of endothelial cells, thereby accelerating endothelialization. The intermediate PLGA fabric exhibits excellent mechanical properties, which allow it to maintain its shape during long-term transplantation and prevent graft expansion. The external macroporous structure is beneficial for cell growth and infiltration. Blood vessel remodeling aims to combine a structure that promotes tissue regeneration with anti-inflammatory materials. The results in vitro demonstrated that it EBT vascular graft (EBTVG) has matched the mechanical properties, reliable cytocompatibility, and the strongest endothelialization in situ. The results in vitro and replacement of the resected artery in vivo suggest that the EBTVG combines different structural advantages with biomechanical properties and reliable biocompatibility, significantly promoting the stabilization and regeneration of vascular endothelial cells and vascular smooth muscle cells, as well as stabilizing the blood microenvironment.


Assuntos
Prótese Vascular , Animais , Humanos , Engenharia Tecidual/métodos , Regeneração/fisiologia , Alicerces Teciduais/química , Células Endoteliais da Veia Umbilical Humana , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Vasos Sanguíneos/fisiologia , Células Endoteliais/citologia
11.
Front Endocrinol (Lausanne) ; 14: 1162445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152963

RESUMO

Graves' disease (GD) is characterized by diffuse enlargement and overactivity of the thyroid gland, which may be accompanied by other physical symptoms. Among them, depression can dramatically damage patients' quality of life, yet its prevalence in GD has not received adequate attention. Some studies have established a strong correlation between GD and increased risk of depression, though the data from current study remains limited. The summary of mechanistic insights regarding GD and depression has underpinned possible pathways by which GD contributes to depression. In this review, we first summarized the clinical evidence that supported the increased prevalence of depression by GD. We then concentrated on the mechanistic findings related to the acceleration of depression in the context of GD, as mounting evidence has indicated that GD promotes the development of depression through various mechanisms, including triggering autoimmune responses, inducing hormonal disorders, and influencing the thyroid-gut-microbiome-brain axis. Finally, we briefly presented potential therapeutic approaches to decreasing the risk of depression among patients with GD.


Assuntos
Depressão , Doença de Graves , Humanos , Depressão/epidemiologia , Depressão/etiologia , Qualidade de Vida , Doença de Graves/complicações , Doença de Graves/epidemiologia , Doença de Graves/diagnóstico
12.
Front Genet ; 14: 1150704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144128

RESUMO

Understanding adaptive genetic variation of plant populations and their vulnerabilities to climate change are critical to preserve biodiversity and subsequent management interventions. To this end, landscape genomics may represent a cost-efficient approach for investigating molecular signatures underlying local adaptation. Tetrastigma hemsleyanum is, in its native habitat, a widespread perennial herb of warm-temperate evergreen forest in subtropical China. Its ecological and medicinal values constitute a significant revenue for local human populations and ecosystem. Using 30,252 single nucleotide polymorphisms (SNPs) derived from reduced-representation genome sequencing in 156 samples from 24 sites, we conducted a landscape genomics study of the T. hemsleyanum to elucidate its genomic variation across multiple climate gradients and genomic vulnerability to future climate change. Multivariate methods identified that climatic variation explained more genomic variation than that of geographical distance, which implied that local adaptation to heterogeneous environment might represent an important source of genomic variation. Among these climate variables, winter precipitation was the strongest predictor of the contemporary genetic structure. F ST outlier tests and environment association analysis totally identified 275 candidate adaptive SNPs along the genetic and environmental gradients. SNP annotations of these putatively adaptive loci uncovered gene functions associated with modulating flowering time and regulating plant response to abiotic stresses, which have implications for breeding and other special agricultural aims on the basis of these selection signatures. Critically, modelling revealed that the high genomic vulnerability of our focal species via a mismatch between current and future genotype-environment relationships located in central-northern region of the T. hemsleyanum's range, where populations require proactive management efforts such as assistant adaptation to cope with ongoing climate change. Taken together, our results provide robust evidence of local climate adaption for T. hemsleyanum and further deepen our understanding of adaptation basis of herbs in subtropical China.

13.
Front Endocrinol (Lausanne) ; 14: 1306550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260150

RESUMO

Primary cilia (PC) are non-motile and microtube-based organelles protruding from the surface of almost all thyroid follicle cells. They maintain homeostasis in thyrocytes and loss of PC can result in diverse thyroid diseases. The dysfunction of structure and function of PC are found in many patients with common thyroid diseases. The alterations are associated with the cause, development, and recovery of the diseases and are regulated by PC-mediated signals. Restoring normal PC structure and function in thyrocytes is a promising therapeutic strategy to treat thyroid diseases. This review explores the function of PC in normal thyroid glands. It summarizes the pathology caused by PC alterations in thyroid cancer (TC), autoimmune thyroid diseases (AITD), hypothyroidism, and thyroid nodules (TN) to provide comprehensive references for further study.


Assuntos
Doença de Hashimoto , Hipotireoidismo , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Cílios
14.
Hum Cell ; 36(6): 2087-2098, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37537406

RESUMO

Tamoxifen is one of the most effective therapeutic tools for estrogen receptor-positive (ER +) breast cancer. However, the intrinsic insensitivity and resistance to tamoxifen remains a significant hurdle for achieving optimal responses and curative therapy. In this study, we report that F-box and leucine-rich repeat protein 16 (FBXL16) is located in the mitochondria of ER + breast cancer cells. The mitochondrial FBXL16 plays an essential role in sustaining mitochondrial respiration and thereby regulates the sensitivity of ER + breast cancer cells to tamoxifen treatment. Importantly, high FBXL16 expression is significantly correlated with poor overall survival of ER + breast cancer patients. Moreover, mitochondrial inhibition phenocopies FBXL16 depletion in terms of sensitizing the ER + breast cancer cells to tamoxifen treatment. Together, our study demonstrates that FBXL16 acts as a novel regulator of tamoxifen sensitivity. Thus, targeting FBXL16 may serve as a promising approach for improving the therapeutic efficacy of tamoxifen in ER + breast cancer cells.

15.
Front Endocrinol (Lausanne) ; 14: 1241962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780612

RESUMO

Objectives: To evaluate the effectiveness and potential mechanism of traditional Chinese medicine Jiawei-Xiaoyao-San (JWXYS) as an adjunct or mono- therapy for antithyroid drugs (ATDs) in the treatment of hyperthyroidism. Methods: Eight databases and three trial registries were searched from inception until May 2023. Randomized controlled trials (RCTs) were included and meta-analysis was conducted using RevMan 5.4 and Stata 14.0. The Cochrane risk of bias (ROB) tool 1.0 and GRADE tool was used for quality appraisal. The findings from case reports using mono-JWXYS and pharmacological studies were summarized in tables. Results: Thirteen RCTs with 979 participants were included. The majority of the included studies were assessed as high risk of bias in one ROB domain. Compared with ATDs, JWXYS plus ATDs resulted in lower free triiodothyronine (FT3) (MD = -1.31 pmol/L, 95% CI [-1.85, -0.76]; low-certainty), lower free thyroxine (MD = -3.24 pmol/L, 95% CI [-5.06, -1.42]; low-certainty), higher thyroid stimulating hormone (MD = 0.42 mIU/L, 95% CI [0.26, 0.59]; low-certainty), higher effectiveness rate of traditional Chinese medicine syndrome (RR = 1.28, 95% CI [1.08, 1.52]; low-certainty), lower goiter score (MD = -0.66, 95% CI [-1.04, -0.29]; very low-certainty), lower thyrotrophin receptor antibody (SMD = -0.44, 95% CI [-0.73, -0.16]; low-certainty) and fewer adverse events (AEs) (RR = 0.34, 95% CI [0.18, 0.67]; moderate-certainty). Compared with regular dosage of ATDs, JWXYS plus half-dose ATDs resulted in fewer AEs (RR = 0.24, 95% CI [0.10, 0.59]; low-certainty). Compared with ATDs in 1 trial, JWXYS resulted in higher FT3, lower goiter score and fewer AEs. Three case reports showed that the reasons patients sought TCM-only treatment include severe AEs and multiple relapses. Three pharmacological studies demonstrated that JWXYS restored Th17/Treg balance, lowered deiodinases activity, regulated thyroid cell proliferation and apoptosis, and alleviated liver oxidative stress in mouse or rat models. Conclusion: JWXYS may enhance the effectiveness of ATDs for hyperthyroidism, particularly in relieving symptoms and reducing AEs. Mono-JWXYS is not recommended except in patients intolerant to ATDs. The findings should be interpreted with caution due to overall high risk of bias. Further pharmacological studies with more reliable models are needed. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023394923.


Assuntos
Bócio , Hipertireoidismo , Animais , Humanos , Camundongos , Ratos , Hipertireoidismo/tratamento farmacológico , Relatos de Casos como Assunto
16.
Front Pharmacol ; 14: 1272124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854714

RESUMO

Objective: To evaluate the efficacy and safety of Ophiocordyceps sinensis (OS) preparations for the treatment of Hashimoto's thyroiditis (HT). Methods: We searched eight databases to collect randomized controlled trials (RCTs) of OS combined with a low-iodine diet or levothyroxine for HT. The search period was from inception to June 2023. Meta-analysis was performed using Revman 5.3 software after two evaluators independently screened the literature, extracted data, and evaluated the risk of bias of the included studies. The GRADE system was used to assess the certainty of evidence. Results: A total of 14 RCTs involving 1,014 patients with HT were included. Meta-analysis showed that OS preparations combined with a low-iodine diet were more effective in reducing thyroid peroxidase antibody (TPOAb) [SMD = -3.81, 95% CI (-5.07, -2.54), p < 0.00001] and thyroglobulin antibody (TgAb) [SMD = -4.73, 95% CI (-6.86, -2.61), p < 0.00001] compared to a low-iodine diet. Compared with levothyroxine treatment alone, OS preparations combined with levothyroxine further reduced TPOAb [SMD = -2.04, 95% CI (-2.82, -1.26), p < 0.00001], TgAb [SMD = -2.01, 95% CI (-2.68, -1.33), p < 0.00001], tumor necrosis factor alpha (TNF-α) [SMD = -3.40, 95% CI (-5.66, -1.14), p = 0.003], interleukin-2 (IL-2) [SMD = -2.31, 95% CI (-3.98, -0.65), p = 0.006], and interleukin-6 (IL-6) [MD = -4.16, 95% CI (-6.17, -2.15), p < 0.0001], and elevated free thyroxine (FT4) [SMD = 1.34, 95% CI (0.59, 2.08), p = 0.0004], but no significant effect on free triiodothyronine (FT3) [SMD = 0.83, 95% CI (-0.12, 1.78), p = 0.09] and thyroid stimulating hormone (TSH) [SMD = -0.80, 95% CI (-1.71, 0.11), p = 0.08]. In terms of safety, three studies reported adverse reactions in 10 patients in each of the experimental and control groups. Conclusion: OS preparations in combination with other treatments (low-iodine diet or levothyroxine) may decrease thyroid autoantibodies and inflammatory responses in patients with HT. In HT patients with hypothyroidism, the combination of the OS preparations with levothyroxine also improved FT4. However, the quality of the included studies was generally low. Moreover, the safety of OS preparations remains unclear. Therefore, more high-quality, multicenter, large-sample RCTs are needed in the future to validate the efficacy and safety of OS preparations. Systematic Review Registration: https://www.crd.york.ac.uk/prospero, identifier CRD42023432663.

17.
Front Microbiol ; 14: 1247868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029215

RESUMO

Introduction: Dandelion (Pugongying) is one of the most frequently used Chinese herbs for treating lactational mastitis (LM). Pugongying granules, a patented medication primarily comprised of dandelion extract, have been approved by CFDA for LM treatment in China. The aims of this study were to investigate the etiology of LM and the mechanism by which Pugongying granules decrease LM symptoms, with a particular focus on the microbial communities found in breastmilk. Methods: Participants were recruited from a previously performed randomized controlled trial (Identifier: NCT03756324, ClinicalTrials.gov). Between 2019 and 2020, women diagnosed with unilateral LM at the Beijing University of Chinese Medicine Third Affiliated Hospital were enrolled. In total, 42 paired breastmilk samples from the healthy and affected breasts of the participants were collected. Additionally, 37 paired pre- and post-treatment breastmilk samples from the affected breast were collected from women who received a 3-day course of either Pugongying granules (20 women) or cefdinir (17 women). Clinical outcomes [e.g., body temperature, visual analogue scale (VAS) score for breast pain, the percentage of neutrophils (NE%)] were analyzed pre- and post-treatment, and the breastmilk samples were subjected to 16S rRNA gene sequencing to analyze the alpha and beta diversities and identify significant bacteria. Finally, the relationship between microorganisms and clinical outcomes was analyzed. Results: There was no significant difference in fever and pain between the Pugongying group and cefdinir group. The most prevalent bacterial genera in breastmilk were Streptococcus and Staphylococcus. Compared to healthy breastmilk, microbial diversity was reduced in affected breastmilk, and there was a higher relative abundance of Streptococcus. After Pugongying treatment, there was an increase in microbial diversity with significantly higher abundance of Corynebacterium. A negative correlation was found between Corynebacterium, VAS score, and NE%. Treatment with cefdinir did not affect microbial diversity. Taken together, our results show a correlation between LM and reduced microbial diversity, as well as an increased abundance of Streptococcus in affected breastmilk. Conclusion: Pugongying granules enhanced microbial diversity in breastmilk samples. Given the substantial variation in individual microbiomes, identifying specific species of Streptococcus and Corynebacterium associated with LM may provide additional insight into LM pathogenesis and treatment.

18.
Medicine (Baltimore) ; 102(38): e34753, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37747014

RESUMO

To identify the active constituents, core targets, immunomodulatory functions and potential mechanisms of Dizhi pill (DZP) in the treatment of myopia. The active constituents and drug targets of DZP were searched in the TCMSP, Herb databases and correlational studies. The targets of myopia were searched in the TTD, Genecards, OMIM and Drugbank databases. Gene expression profile data of GSE136701 were downloaded from the GEO database and subjected to WGCNA and DEG analysis to screen for significant modules and targets of myopia. Intersectional targets of myopia and DZP and core targets of myopia were analyzed through the String database. The GO and KEGG enrichment analyses of the interested targets were conducted. Cibersort algorithm was used for immune infiltration analysis to investigate the immunomodulatory functions of DZP on myopia. Autodock was used to dock the important targets and active constituents. Eight targets (STAT3, PIK3CA, PIK3R1, MAPK1, MAPK3, HSP90AA1, MIP, and LGSN) and 5 active constituents (Quercetin, Beta-sitosterol, Diincarvilone A, Ferulic acid methyl ester, and Naringenin) were identified from DZP. In pathways identified by the GO and KEGG enrichment analyses, "ATP metabolic process" and "AGE-RAGE diabetes complication signaling" pathways were closely related to the mechanisms of DZP in the treatment of myopia. Molecular docking showed that both the intersectional targets and core targets of myopia could bind stably and spontaneously with the active constituents of DZP. This study suggested that the mechanisms of DZP in the treatment of myopia were related to active constituents: Quercetin, Beta-sitosterol, Diincarvilone A, Ferulic acid methyl ester and Naringenin, intersectional targets: STAT3, PIK3CA, PIK3R1, MAPK1, MAPK3, and HSP90AA1, core targets of myopia: MIP and LGSN, AGE-RAGE signaling pathway, positive regulation of ATP metabolic process pathway and immunomodulatory functions.


Assuntos
Medicamentos de Ervas Chinesas , Miopia , Humanos , Trifosfato de Adenosina/metabolismo , Biologia Computacional , Simulação de Acoplamento Molecular , Miopia/tratamento farmacológico , Miopia/genética , Miopia/imunologia , Quercetina , Fatores de Transcrição , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico
19.
Am J Pathol ; 179(3): 1265-77, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763674

RESUMO

Hemorrhage under the neural retina (subretinal hemorrhage) can occur in the context of age-related macular degeneration and induce subsequent photoreceptor cell death and permanent vision loss. Current treatments with the objective of removing or displacing the hemorrhage are invasive and of mixed efficacy. We created a mouse model of subretinal hemorrhage to characterize the inflammatory responses and photoreceptor degeneration that occur in the acute aftermath of hemorrhage. It was observed that microglial infiltration into the outer retina commences as early as 6 hours after hemorrhage. Inflammatory cells progressively accumulate in the outer nuclear layer concurrently with photoreceptor degeneration and apoptosis. Administration of minocycline, an inhibitor of microglial activation, decreased microglial expression of chemotactic cytokines in vitro and reduced microglial infiltration and photoreceptor cell loss after subretinal hemorrhage in vivo. Inflammatory responses and photoreceptor atrophy occurred after subretinal hemorrhage, however, the degree of response and atrophy were similar between C3-deficient and C3-sufficient mice, indicating a limited role for complement-mediated processes. Our data indicate a role for inflammatory responses in driving photoreceptor cell loss in subretinal hemorrhage, and it is proposed that microglial inhibition may be beneficial in the treatment of subretinal hemorrhage.


Assuntos
Microglia/efeitos dos fármacos , Minociclina/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Hemorragia Retiniana/prevenção & controle , Degeneração Macular Exsudativa/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hemorragia Retiniana/patologia , Retinite/metabolismo , Retinite/patologia , Degeneração Macular Exsudativa/patologia
20.
Front Cell Infect Microbiol ; 12: 780272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463641

RESUMO

Disturbance of bone homeostasis caused by Mycobacterium tuberculosis (Mtb) is a key clinical manifestation in spinal tuberculosis (TB). However, the complete mechanism of this process has not been established, and an effective treatment target does not exist. Increasing evidence shows that abnormal osteoclastogenesis triggered by an imbalance of the receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) axis may play a key role in the disturbance of bone homeostasis. Previous studies reported that RANKL is strongly activated in patients with spinal TB; however, the OPG levels in these patients were not investigated in previous studies. In this study, we investigated the OPG levels in patients with spinal TB and the dysregulation of osteoblasts caused by Mtb infection. Inhibition of the Mce4a gene of Mtb by an antisense locked nucleic acid (LNA) gapmer (Mce4a-ASO) was also investigated. Analysis of the serum OPG levels in clinical samples showed that the OPG levels were significantly decreased in patients with spinal TB compared to those in the group of non-TB patients. The internalization of Mtb in osteoblasts, the known major source of OPG, was investigated using the green fluorescent protein (GFP)-labeled Mycobacterium strain H37Ra (H37RaGFP). The cell-associated fluorescence measurements showed that Mtb can efficiently enter osteoblast cells. In addition, Mtb infection caused a dose-dependent increase of the CD40 mRNA expression and cytokine (interleukin 6, IL-6) secretion in osteoblast cells. Ligation of CD40 by soluble CD154 reversed the increased secretion of IL-6. This means that the induced CD40 is functional. Considering that the interaction between CD154-expressing T lymphocytes and bone-forming osteoblast cells plays a pivotal role in bone homeostasis, the CD40 molecule might be a strong candidate for mediating the target for treatment of bone destruction in spinal TB. Additionally, we also found that Mce4a-ASO could dose-dependently inhibit the Mce4a gene of Mtb and reverse the decreased secretion of IL-6 and the impaired secretion of OPG caused by Mtb infection of osteoblast cells. Taken together, the current finding provides breakthrough ideas for the development of therapeutic agents for spinal TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose da Coluna Vertebral , Humanos , Interleucina-6/metabolismo , Mycobacterium tuberculosis/metabolismo , Osteoblastos/metabolismo , Osteoclastos/química , Osteoclastos/metabolismo , Osteogênese , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Tuberculose da Coluna Vertebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA