RESUMO
Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.
Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Proteínas de Plantas , Fatores de Transcrição , Oryza/genética , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resistência à Doença/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Regulação da Expressão Gênica de Plantas , Magnaporthe/fisiologia , AscomicetosRESUMO
Five new chlorophenolic glucosides, curculigine E (1), curculigine F (2), curculigine G (3), curculigine H (5), curculigine I (6) and one new phenolic glycoside, orcinoside H (4), together with eight known phenolic glycosides (7-14) were isolated from the Curculigo orchioides Gaertn. Their structures were established by spectroscopic techniques (IR, UV, MS, 1D and 2D NMR). The isolated phenolic glycosides were evaluated for antiosteoporotic activity against MC3T3-E1 cell line using MTT assays. Compounds 1, 2, 3, and 5 showed moderate antiosteoporotic activity with the proliferation rate of 10.1-14.1%.