Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gynecol Oncol ; 165(1): 105-113, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151492

RESUMO

OBJECTIVE: Gastric-type cervical adenocarcinoma (GCA) is a rare and aggressive type of endocervical adenocarcinoma (ECA) with distinct histopathologic features and unfavorable treatment outcomes, but no genomic prognostic factor has been revealed. We aimed to systematically investigate the somatic alterations of GCA at genome-wide level and evaluate their prognostic value. METHODS: We performed whole-exome sequencing (WES) on 25 pairs of tumor and matched normal samples to characterize the genomic features of Chinese patients with GCA and investigated their relations to histopathological characterizations and prognosis. The prognostic value of the genomic alterations was evaluated in a total of 58 GCA patients. RESULTS: Mutations were commonly observed in reported GCA-related driver genes, including TP53 (32%), CDKN2A (20%), SKT11 (20%), BRCA2 (12%), SMAD4 (12%), and ERBB2 (12%). Recurrent novel trunk mutations were also observed in PBRM1 (12%), FRMPD4 (12%), and NOP2 (8%) with high variant allele frequency. Moreover, enrichment of the APOBEC signature was attributed to frequent gain of somatic copy number alteration (SCNA) of APOBEC3B (20%), which perfectly matched the nuclear-positive staining of APOBEC3B through immunohistochemistry. In contrast, APOBEC3B alteration was absent in patients with conventional type of ECA (N = 52). Notably, positive APOBEC3B was consistently enriched in patients with favorable prognosis in both the discovery cohort and an additional 33 GCA patients, thus indicating a significant association with lower relapse risk of GCA independent of cancer stage (P = 0.02). CONCLUSION: Our results can aid understanding of the molecular basis of GCA in the Chinese population by providing genomic profiles and highlighting the potential prognostic value of APOBEC3B for GCA through routine clinical IHC.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Neoplasias do Colo do Útero , Adenocarcinoma/genética , Adenocarcinoma/patologia , Citidina Desaminase/genética , Feminino , Humanos , Antígenos de Histocompatibilidade Menor/genética , Mutação , Recidiva Local de Neoplasia , Prognóstico , Neoplasias Gástricas/genética , Neoplasias do Colo do Útero/genética
2.
Appl Microbiol Biotechnol ; 104(7): 2973-2985, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043188

RESUMO

In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in Bacillus subtilis 168M. Signal peptide YwbN' proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN'. Insertion of arginine (R) between residues 5 and 6 of YwbN'∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the H-region of YwbN'∆p were critical for improving alkaline α-amylase production in B. subtilis 168M. PHpaII was the optimal promoter, and deleting - 27T or - 31A from PHpaII enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of B. subtilis 168M P∆-27T was increased by 250.6-fold, compared with B. subtilis 168M A1.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , alfa-Amilases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes , Regiões Promotoras Genéticas/genética , Engenharia de Proteínas , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica , alfa-Amilases/genética
3.
Protein Expr Purif ; 114: 82-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26134659

RESUMO

In this study, atmospheric and room temperature plasma (ARTP), a promising mutation breeding technique, was successfully applied to generate Bacillus subtilis mutants that yielded large quantities of recombinant protein. The high throughput screening platform was implemented to select those mutants with the highest yield of recombinant alkaline α-amylase (AMY), including the preferred mutant B. subtilis WB600 mut-12#. The yield and productivity of recombinant AMY in B. subtilis WB600 mut-12# increased 35.0% and 8.8%, respectively, the extracellular protein concentration of which increased 37.9%. B. subtilis WB600 mut-12# exhibited good genetic stability. Cells from B. subtilis WB600 mut-12# became shorter and wider than those from the wild-type. This study is the first to report a novel powerful mutagenesis tool (ARTP) that significantly improves the yield of recombinant proteins in B. subtilis and may therefore play an important role in the high expression level of proteins in recombinant microbial hosts.


Assuntos
Bacillus subtilis/genética , Proteínas Recombinantes/metabolismo , alfa-Amilases/metabolismo , Mutagênese Sítio-Dirigida , Gases em Plasma , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , alfa-Amilases/química , alfa-Amilases/genética , alfa-Amilases/isolamento & purificação
4.
Phys Chem Chem Phys ; 17(6): 4589-99, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25584920

RESUMO

The role of base pair composition and stacking sequence in the optical properties and electronic transitions of DNA is of fundamental interest. We present and compare the optical properties of DNA oligonucleotides (AT)10, (AT)5(GC)5, and (AT-GC)5 using both ab initio methods and UV-vis molar absorbance measurements. Our data indicate a strong dependence of both the position and intensity of UV absorbance features on oligonucleotide composition and stacking sequence. The partial densities of states for each oligonucleotide indicate that the valence band edge arises from a feature associated with the PO4(3-) complex anion, and the conduction band edge arises from anti-bonding states in DNA base pairs. The results show a strong correspondence between the ab initio and experimentally determined optical properties. These results highlight the benefit of full spectral analysis of DNA, as opposed to reductive methods that consider only the 260 nm absorbance (A260) or simple purity ratios, such as A260/A230 or A260/A280, and suggest that the slope of the absorption edge onset may provide a useful metric for the degree of base pair stacking in DNA. These insights may prove useful for applications in biology, bioelectronics, and mesoscale self-assembly.


Assuntos
DNA/química , Oligonucleotídeos/química , Pareamento de Bases , Teoria Quântica , Espectrofotometria Ultravioleta
5.
J Biol Phys ; 41(1): 85-97, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25403822

RESUMO

Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.


Assuntos
Luz , Concentração Osmolar , Espalhamento de Radiação , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Hidrodinâmica , Ligação Proteica/efeitos dos fármacos , Soroalbumina Bovina/química , Cloreto de Sódio/farmacologia , Eletricidade Estática
6.
J Vis Exp ; (192)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804915

RESUMO

Anaplastic thyroid cancer (ATC) is a rare but lethal malignancy with a dismal prognosis. There is an urgent need for more in-depth research on the carcinogenesis and development of ATC, as well as therapeutic methods, since standard treatments are essentially depleted in ATC patients. However, low prevalence has hampered thorough clinical studies and the collection of tissue samples, so little progress has been achieved in creating effective treatments. We used genetic engineering to create a conditionally inducible ATC murine model (mATC) in a C57BL/6 background. The ATC murine model was genotyped by TPO-cre/ERT2; BrafCA/wt; Trp53ex2-10/ex2-10 and induced by intraperitoneal injection with tamoxifen. With the murine model, we investigated the tumor dynamics (tumor size ranged from 12.4 mm2 to 32.5 mm2 after 4 months of induction), survival (the median survival period was 130 days), and metastasis (lung metastases occurred in 91.6% of mice) curves and pathological features (characterized by Cd8, Foxp3, F4/80, Cd206, Ki67, and Caspase-3 immunohistochemical staining). The results indicated that spontaneous mATC possesses highly similar tumor dynamics and immunological microenvironment to human ATC tumors. In conclusion, with high similarity in pathophysiological features and unified genotypes, the mATC model resolved the shortage of clinical ATC tissue and sample heterogeneity to some extent. Therefore, it would facilitate the mechanism and translational studies of ATC and provide an approach to investigate the treatment potential of small molecular drugs and immunotherapy agents for ATC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Camundongos , Humanos , Animais , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microambiente Tumoral
7.
J Vis Exp ; (188)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36314843

RESUMO

Anaplastic thyroid carcinoma (ATC) is associated with a poor prognosis and short median survival time, but no effective treatment improves the outcomes significantly. Genetically engineered murine models that mimic ATC's progression may help researchers to study treatments for this disease. Crossing three different genotypes of mice, a TPO-cre/ERT2; BrafCA/wt; Trp53Δex2-10/Δex2-10 transgenic ATC model was developed. The ATC murine model was induced by an intraperitoneal injection of tamoxifen with overexpression of BrafV600E and deletion of Trp53, and the tumors were generated within about 1 month. High-resolution ultrasound was applied to investigate the tumor initiation and progression, and the dynamic growth curve was obtained by measuring the tumor sizes. Compared to magnetic resonance imaging (MRI) and computed tomography scanning, ultrasound has advantages in observing the ATC murine model, such as being noninvasive, portable, in real-time, and without radiation exposure. High-resolution ultrasound is suitable for dynamic and multiple measurements. However, ultrasonographic examination of the thyroid in mice requires relevant anatomical knowledge and experience. This article provides a detailed procedure for utilizing high-resolution ultrasound to scan tumors in the transgenic ATC model. Meanwhile, ultrasonic parameter adjustment, ultrasound scanning skills, anesthesia and recovery of the animals, and other elements that need attention during the process are listed.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Camundongos , Animais , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/genética , Modelos Animais de Doenças , Ultrassonografia
8.
Opt Express ; 19(9): 8912-9, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21643144

RESUMO

Coupling between superradiant and subradiant mode resonators in a metamaterial unit cell plays an important role in observing the sharp transparency peak due to destructive interference between the resonators. This effect is enhanced as the resonators are brought closer to each other in a conventional planar arrangement. We present a novel coupling scheme of planar terahertz metamaterial to tune the plasmon-induced transparency peak by physically varying the distance between the superradiant and the subradiant resonators in such a way that the transparency peak begins to disappear as the coupled resonators are brought closer than a critical separation distance. The effect is attributed to the disappearance of the resonant behavior of the subradiant resonator in a closely coupled regime. The simple planar design presented here demonstrates a scheme to manipulate the electromagnetically induced transparency-like behavior in terahertz metamaterials and this could lead to the development of unique slow light devices for terahertz applications.


Assuntos
Modelos Teóricos , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Espalhamento de Radiação , Radiação Terahertz
9.
Adv Biosyst ; 1(10): e1700088, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32646196

RESUMO

Photon extraction and capture efficiency is a complex function of the material's composition, its molecular structure at the nanoscale, and the overall organization spanning multiple length scales. The architecture of the material defines the performance; nanostructured features within the materials enhance the energy efficiency. Photon capturing materials are largely produced through lithographic, top-down, manufacturing schemes; however, there are limits to the smallest dimension achievable using this technology. To overcome these technological barriers, a bottom-up nanomanufacturing is pursued. Inspired by the self-programmed assembly of virus arrays in host cells resulting in iridescence of infected organisms, virus-programmed, nanostructured arrays are studied to pave the way for new design principles in photon management and biology-inspired materials science. Using the nanoparticles formed by plant viruses in combination with charged polymers (dendrimers), a bottom-up approach is illustrated to prepare a family of broadband, low-angular dependent antireflection mesoscale layered materials for potential application as photon management coatings. Measurement and theory demonstrate antireflectance and phototrapping properties of the virus-programmed assembly. This opens up new bioengineering principles for the nanomanufacture of coatings and films for use in LED lighting and photovoltaics.

10.
J Biol Eng ; 10: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777616

RESUMO

BACKGROUND: Alkaline amylase has significant potential for applications in the textile, paper and detergent industries, however, low yield of which cannot meet the requirement of industrial application. In this work, a novel ARTP mutagenesis-screening method and fermentation optimization strategies were used to significantly improve the expression level of recombinant alkaline amylase in B. subtilis 168. RESULTS: The activity of alkaline amylase in mutant B. subtilis 168 mut-16# strain was 1.34-fold greater than that in the wild-type, and the highest specific production rate was improved from 1.31 U/(mg·h) in the wild-type strain to 1.57 U/(mg·h) in the mutant strain. Meanwhile, the growth of B. subtilis was significantly enhanced by ARTP mutagenesis. When the agitation speed was 550 rpm, the highest activity of recombinant alkaline amylase was 1.16- and 1.25-fold of the activities at 450 and 650 rpm, respectively. When the concentration of soluble starch and soy peptone in the initial fermentation medium was doubled, alkaline amylase activity was increased 1.29-fold. Feeding hydrolyzed starch and soy peptone mixture or glucose significantly improved cell growth, but inhibited the alkaline amylase production in B. subtilis 168 mut-16#. The highest alkaline amylase activity by feeding hydrolyzed starch reached 591.4 U/mL, which was 1.51-fold the activity by feeding hydrolyzed starch and soy peptone mixture. Single pulse feeding-based batch feeding at 10 h favored the production of alkaline amylase in B. subtilis 168 mut-16#. CONCLUSION: The results indicated that this novel ARTP mutagenesis-screening method could significantly improve the yield of recombinant proteins in B. subtilis. Meanwhile, fermentation optimization strategies efficiently promoted expression of recombinant alkaline amylase in B. subtilis 168 mut-16#. These findings have great potential for facilitating the industrial-scale production of alkaline amylase and other enzymes, using B. subtilis cultures as microbial cell factories.

11.
Bioengineered ; 5(5): 300-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482231

RESUMO

Phage diversity significantly contributes to ecology and evolution of new bacterial species through horizontal gene transfer. Therefore, it is essential to understand the mechanisms underlying phage-host interactions. After initial infection, the phage utilizes the transcriptional machinery of the host to direct the expression of its own genes. This review presents a view on the transcriptional regulation mechanisms of bacteriophages, and its contribution to phage diversity and classification. Through this review, we aim to broaden the understanding of phage-host interactions while providing a reference source for researchers studying the regulation of phage transcription.


Assuntos
Bacteriófagos/genética , Regulação Viral da Expressão Gênica , RNA Polimerases Dirigidas por DNA/genética , Regiões Promotoras Genéticas/genética
12.
Nat Commun ; 3: 1151, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093188

RESUMO

Recently reported metamaterial analogues of electromagnetically induced transparency enable a unique route to endow classical optical structures with aspects of quantum optical systems. This method opens up many fascinating prospects on novel optical components, such as slow light units, highly sensitive sensors and nonlinear devices. In particular, optical control of electromagnetically induced transparency in metamaterials promises essential application opportunities in optical networks and terahertz communications. Here we present active optical control of metamaterial-induced transparency through active tuning of the dark mode. By integrating photoconductive silicon into the metamaterial unit cell, a giant switching of the transparency window occurs under excitation of ultrafast optical pulses, allowing for an optically tunable group delay of the terahertz light. This work opens up the possibility for designing novel chip-scale ultrafast devices that would find utility in optical buffering and terahertz active filtering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA