RESUMO
Exploring the potential lead compounds for Alzheimer's disease (AD) remains one of the challenging tasks. Here, we report that the plant extract conophylline (CNP) impeded amyloidogenesis by preferentially inhibiting BACE1 translation via the 5' untranslated region (5'UTR) and rescued cognitive decline in an animal model of APP/PS1 mice. ADP-ribosylation factor-like protein 6-interacting protein 1 (ARL6IP1) was then found to mediate the effect of CNP on BACE1 translation, amyloidogenesis, glial activation, and cognitive function. Through analysis of the 5'UTR-targetd RNA-binding proteins by RNA pulldown combined with LC-MS/MS, we found that FMR1 autosomal homolog 1 (FXR1) interacted with ARL6IP1 and mediated CNP-induced reduction of BACE1 by regulating the 5'UTR activity. Without altering the protein levels of ARL6IP1 and FXR1, CNP treatment promoted ARL6IP1 interaction with FXR1 and inhibited FXR1 binding to the 5'UTR both in vitro and in vivo. Collectively, CNP exhibited a therapeutic potential for AD via ARL6IP1. Through pharmacological manipulation, we uncovered a dynamic interaction between FXR1 and the 5'UTR in translational control of BACE1, adding to the understanding of the pathophysiology of AD.
Assuntos
Doença de Alzheimer , Animais , Camundongos , Regiões 5' não Traduzidas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Cromatografia Líquida , Proteína do X Frágil da Deficiência Intelectual/genética , Biossíntese de Proteínas , Espectrometria de Massas em TandemRESUMO
Epilepsy is considered to result from an imbalance between excitation and inhibition of the central nervous system. Pathogenic mutations in the methyl-CpG binding domain protein 5 gene (MBD5) are known to cause epilepsy. However, the function and mechanism of MBD5 in epilepsy remain elusive. Here, we found that MBD5 was mainly localized in the pyramidal cells and granular cells of mouse hippocampus, and its expression was increased in the brain tissues of mouse models of epilepsy. Exogenous overexpression of MBD5 inhibited the transcription of the signal transducer and activator of transcription 1 gene (Stat1), resulting in increased expression of N-methyl-d-aspartate receptor (NMDAR) subunit 1 (GluN1), 2A (GluN2A) and 2B (GluN2B), leading to aggravation of the epileptic behaviour phenotype in mice. The epileptic behavioural phenotype was alleviated by overexpression of STAT1 which reduced the expression of NMDARs, and by the NMDAR antagonist memantine. These results indicate that MBD5 accumulation affects seizures through STAT1-mediated inhibition of NMDAR expression in mice. Collectively, our findings suggest that the MBD5-STAT1-NMDAR pathway may be a new pathway that regulates the epileptic behavioural phenotype and may represent a new treatment target.
Assuntos
Epilepsia , Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/genética , Transdução de Sinais , Fator de Transcrição STAT1/metabolismoRESUMO
Mitochondrial Tu translation elongation factor (TUFM or EF-Tu) is part of the mitochondrial translation machinery. It is reported that TUFM expression is reduced in the brain of Alzheimer's disease (AD), suggesting that TUFM might play a role in the pathophysiology. In this study, we found that TUFM protein level was decreased in the hippocampus and cortex especially in the aged APP/PS1 mice, an animal model of AD. In HEK cells that stably express full-length human amyloid-ß precursor protein (HEK-APP), TUFM knockdown or overexpression increased or reduced the protein levels of ß-amyloid protein (Aß) and ß-amyloid converting enzyme 1 (BACE1), respectively. TUFM-mediated reduction of BACE1 was attenuated by translation inhibitor cycloheximide (CHX) or α-[2-[4-(3,4-Dichlorophenyl)-2-thiazolyl]hydrazinylidene]-2-nitro-benzenepropanoic acid (4EGI1), and in cells overexpressing BACE1 constructs deleting the 5' untranslated region (5'UTR). TUFM silencing increased the half-life of BACE1 mRNA, suggesting that RNA stability was affected by TUFM. In support, transcription inhibitor Actinomycin D (ActD) and silencing of nuclear factor κB (NFκB) failed to abolish TUFM-mediated regulation of BACE1 protein and mRNA. We further found that the mitochondria-targeted antioxidant TEMPO diminished the effects of TUFM on BACE1, suggesting that reactive oxygen species (ROS) played an important role. Indeed, cellular ROS levels were affected by TUFM knockdown or overexpression, and TUFM-mediated regulation of apoptosis and Tau phosphorylation at selective sites was attenuated by TEMPO. Collectively, TUFM protein levels were decreased in APP/PS1 mice. TUFM is involved in AD pathology by regulating BACE1 translation, apoptosis, and Tau phosphorylation, in which ROS plays an important role.
Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Modelos Animais de Doenças , Mitocôndrias/patologia , Fator Tu de Elongação de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fosforilação , Presenilina-1/fisiologiaRESUMO
Thioredoxin-2 (TXN2) is a mitochondrial protein and represents one of the intrinsic antioxidant enzymes. It has long been recognized that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of Alzheimer's disease (AD). We hypothesized that mitochondrial TXN2 might play a role in AD-like pathology. In this study, we found that in SH-SY5Y and HEK cells stably express full-length human amyloid-ß precursor protein (HEK-APP), TXN2 silencing or over-expression selectively increased or decreased the transcription of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), respectively, without altering the protein levels of others enzymes involved in the catalytic processing of APP. As a result, ß-amyloid protein (Aß) levels were significantly decreased by TXN2. In addition, in cells treated with 3-nitropropionic acid (3-NP) that is known to increase reactive oxygen species (ROS) and promote mitochondrial dysfunction, TXN2 silencing resulted in further enhancement of BACE1 protein levels, suggesting a role of TXN2 in ROS removal. The downstream signaling might involve NFκB, as TXN2 reduced the phosphorylation of p65 and IκBα; and p65 knockdown significantly attenuated TXN2-mediated regulation of BACE1. Concomitantly, the levels of cellular ROS, apoptosis-related proteins and cell viability were altered by TXN2 silencing or over-expression. In APPswe/PS1E9 mice, an animal model of AD, the cortical and hippocampal TXN2 protein levels were decreased at 12 months but not at 6 months, suggesting an age-dependent decline. Collectively, TXN2 regulated BACE1 expression and amyloidogenesis via cellular ROS and NFκB signaling. TXN2 might serve as a potential target especially for early intervention of AD.
Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas Mitocondriais/metabolismo , Tiorredoxinas/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Reactive oxygen species (ROS) play multiple roles in synaptic transmission, and estrogen-related receptor α (ERRα) is involved in regulating ROS production. The purpose of our study was to explore the underlying effect of ERRα on ROS production, neurite formation and synaptic transmission. Our results revealed that knocking down ERRα expression affected the formation of neuronal neurites and dendritic spines, which are the basic structures of synaptic transmission and play important roles in learning, memory and neuronal plasticity; moreover, the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) were decreased. These abnormalities were reversed by overexpression of human ERRα. Additionally, we also found that knocking down ERRα expression increased intracellular ROS levels in neurons. ROS inhibitor PBN rescued the changes in neurite formation and synaptic transmission induced by ERRα knockdown. These results indicate a new possible cellular mechanism by which ERRα affects intracellular ROS levels, which in turn regulate neurite and dendritic spine formation and synaptic transmission.
RESUMO
Introduction: The species diversity of microbiomes is a cutting-edge concept in metagenomic research. In this study, we propose a multifractal analysis for metagenomic research. Method and Results: Firstly, we visualized the chaotic game representation (CGR) of simulated metagenomes and real metagenomes. We find that metagenomes are visualized with self-similarity. Then we defined and calculated the multifractal dimension for the visualized plot of simulated and real metagenomes, respectively. By analyzing the Pearson correlation coefficients between the multifractal dimension and the traditional species diversity index, we obtain that the correlation coefficients between the multifractal dimension and the species richness index and Shannon diversity index reached the maximum value when q = 0, 1, and the correlation coefficient between the multifractal dimension and the Simpson diversity index reached the maximum value when q = 5. Finally, we apply our method to real metagenomes of the gut microbiota of 100 infants who are newborn and 4 and 12 months old. The results show that the multifractal dimensions of an infant's gut microbiomes can distinguish age differences. Conclusion and Discussion: There is self-similarity among the CGRs of WGS of metagenomes, and the multifractal spectrum is an important characteristic for metagenomes. The traditional diversity indicators can be unified under the framework of multifractal analysis. These results coincided with similar results in macrobial ecology. The multifractal spectrum of infants' gut microbiomes are related to the development of the infants.
Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Lactente , Recém-Nascido , Metagenoma , Microbiota/genética , Microbioma Gastrointestinal/genética , Metagenômica/métodos , EcologiaRESUMO
Sulfuretin is a flavonoid that protects cell from damage induced by reactive oxygen species and inflammation. In this study, we investigated the role of sulfuretin in the processing of amyloid precursor protein (APP), in association with the two catalytic enzymes the α-secretase a disintegrin and metalloproteinase (ADAM10), and the beta-site APP cleaving enzyme 1 (BACE1) that play important roles in the generation of ß amyloid protein (Aß) in Alzheimer's disease (AD). We found that sulfuretin increased the levels of the immature but not the mature form of ADAM10 protein. The enhanced ADAM10 transcription by sulfuretin was mediated by the nucleotides -444 to -300 in the promoter region, and was attenuated by silencing or mutation of transcription factor retinoid X receptor (RXR) and by GW6471, a specific inhibitor of peroxisome proliferator-activated receptor α (PPAR-α). We further found that sulfuretin preferentially increased protein levels of the immature form of APP (im-APP) but significantly reduced those of BACE1, sAPPß and ß-CTF, whereas Aß1-42 levels were slightly increased. Finally, the effect of sulfuretin on BACE1 and im-APP was selectively attenuated by the translation inhibitor cycloheximide and by lysosomal inhibitor chloroquine, respectively. Taken together, (1) RXR/PPAR-α signaling was involved in sulfuretin-mediated ADAM10 transcription. (2) Alteration of Aß protein level by sulfuretin was not consistent with that of ADAM10 and BACE1 protein levels, but was consistent with the elevated level of im-APP protein, suggesting that im-APP, an isoform mainly localized to trans-Golgi network, plays an important role in Aß generation.
RESUMO
Vps34 (vacuolar protein-sorting 34) plays important role in autophagy and endosomal trafficking. These processes are closely associated protein ubiquitination and degradation. We have hypothesized that Vps34 ubiquitination status would also control its degradation. Here, we report that our results did not support this assumption. In cells transiently transfected with ubiquitin (UB) constructs contained different lysine residues (Ks), Vps34 ubiquitination could occur regardless of the presence of any Ks in UB. However, Vps34 protein levels were not significantly altered in cells transiently transfected with these UB mutants. We further found that Vps34 protein was altered by pharmacological manipulation of E2/E3 activity; yet this effect was not significantly affected by UB overexpression. In vivo experiments revealed that in APP/PS1 mice, an animal model of Alzheimer's disease (AD), although ubiquitination of Vps34 was significantly reduced, Vps34 protein levels remained unchanged. Vps34 indeed was subjected to proteasomal or lysosomal degradation, as prolonged treatment of proteasomal inhibitor MG132 or lysosomal inhibitor chloroquine elevated Vps34 protein levels. We conclude that unlike most of other proteins, Vps34 ubiquitination is not closely associated with its degradation.
RESUMO
More and more research works have indicated that microRNAs (miRNAs) play indispensable roles in exploring the pathogenesis of diseases. Detecting miRNA-disease associations by experimental techniques in biology is expensive and time-consuming. Hence, it is important to propose reliable and accurate computational methods to exploring potential miRNAs related diseases. In our work, we develop a novel method (BRWHNHA) to uncover potential miRNAs associated with diseases based on hybrid recommendation algorithm and unbalanced bi-random walk. We first integrate the Gaussian interaction profile kernel similarity into the miRNA functional similarity network and the disease semantic similarity network. Then we calculate the transition probability matrix of bipartite network by using hybrid recommendation algorithm. Finally, we adopt unbalanced bi-random walk on the heterogeneous network to infer undiscovered miRNA-disease relationships. We tested BRWHNHA on 22 diseases based on five-fold cross-validation and achieves reliable performance with average AUC of 0.857, which an area under the ROC curve ranging from 0.807 to 0.924. As a result, BRWHNHA significantly improves the performance of inferring potential miRNA-disease association compared with previous methods. Moreover, the case studies on lung neoplasms and prostate neoplasms also illustrate that BRWHNHA is superior to previous prediction methods and is more advantageous in exploring potential miRNAs related diseases. All source codes can be downloaded from https://github.com/myl446/BRWHNHA .
Assuntos
Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , MicroRNAs/genética , Algoritmos , Biologia Computacional , Simulação por Computador , Humanos , Modelos GenéticosRESUMO
Methionine sulfoxide reductase B2 (MSRB2) is a mitochondrial protein that protects cell from oxidative stress. The antioxidant activity suggests that MSRB2 may play a role in the pathophysiology of Alzheimer's disease (AD). Here, we report that in APP/PS1 mice, an animal model of AD, MSRB2 protein levels were decreased in the hippocampus at both young (6 mon) and old (18 mon) age, and in the cortex only at an old age, respectively. In HEK293 cells that stably express human full-length ß-amyloid precursor protein (APP, HEK/APP), MSRB2 reduced the protein and mRNA levels of APP and ß-amyloid converting enzyme 1 (BACE1), and the consequent amyloid beta peptide (Aß) 1-40 and Aß1-42 levels. MSRB2 overexpression or knockdown also oppositely affected Tau phosphorylation at selective sites, with the concomitant alteration of the phosphorylated extracellular signal regulated kinase (p-ERK) and AMP-activated protein kinase (p-AMPK) levels. Moreover, in cells treated with long-term (24â¯h) hydrogen peroxide, the alterations of APP processing and Tau phosphorylation were reversed by MSRB2 overexpression. We further found that MSRB2-mediated regulation of APP transcription involved JNK and ERK signaling, as MSRB2 also reduced the levels of phosphorylated JNK (p-JNK), and JNK or ERK inhibitor attenuated the effect of MSRB2 on APP proteins and transcripts. Finally, MSRB2 reduced apoptosis-related proteins Bax and caspase3 and enhanced the anti-apoptotic protein Bcl2. These results indicated that the role for MSRB2 in AD-like pathology was closely associated with its antioxidant activity. By attenuating both amyloidogenesis and Tau phosphorylation, MSRB2 may serve as a potential therapeutic target for AD.
Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Metionina Sulfóxido Redutases/metabolismo , Mitocôndrias/enzimologia , Estresse Oxidativo/fisiologia , Animais , Células HEK293 , Humanos , Camundongos , Camundongos TransgênicosRESUMO
Cav1.2 is the pore-forming subunit of L-type voltage-gated calcium channel (LTCC) that plays an important role in calcium overload and cell death in Alzheimer's disease. LTCC activity can be regulated by estrogen, a sex steroid hormone that is neuroprotective. Here, we investigated the potential mechanisms in estrogen-mediated regulation of Cav1.2 protein. We found that in cultured primary neurons, 17ß-estradiol (E2) reduced Cav1.2 protein through estrogen receptor α (ERα). This effect was offset by a proteasomal inhibitor MG132, indicating that ubiquitin-proteasome system was involved. Consistently, the ubiquitin (UB) mutant at lysine 29 (K29R) or the K29-deubiquitinating enzyme TRAF-binding protein domain (TRABID) attenuated the effect of ERα on Cav1.2. We further identified that the E3 ligase Mdm2 (double minute 2 protein) and the PEST sequence in Cav1.2 protein played a role, as Mdm2 overexpression and the membrane-permeable PEST peptides prevented ERα-mediated Cav1.2 reduction, and Mdm2 overexpression led to the reduced Cav1.2 protein and the increased colocalization of Cav1.2 with ubiquitin in cortical neurons in vivo. In ovariectomized (OVX) APP/PS1 mice, administration of ERα agonist PPT reduced cerebral Cav1.2 protein, increased Cav1.2 ubiquitination, and improved cognitive performances. Taken together, ERα-induced Cav1.2 degradation involved K29-linked UB chains and the E3 ligase Mdm2, which might play a role in cognitive improvement in OVX APP/PS1 mice.
Assuntos
Precursor de Proteína beta-Amiloide/genética , Canais de Cálcio Tipo L/metabolismo , Receptor alfa de Estrogênio/metabolismo , Neurônios/metabolismo , Oligopeptídeos/genética , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular Tumoral , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Feminino , Técnicas de Silenciamento de Genes , Humanos , Leupeptinas/farmacologia , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenóis/farmacologia , Fenóis/uso terapêutico , Inibidores de Proteassoma/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Transfecção , Ubiquitina/metabolismoRESUMO
Estrogen-related receptor alpha (ERRα) is a transcriptional factor associated with mitochondrial biogenesis and energy metabolism. However, little is known about the role of ERRα in Alzheimer's disease (AD). Here, we report that in APP/PS1 mice, an animal model of AD, ERRα protein and mRNA were decreased in a region- and age-dependent manner. In HEK293 cells that stably express human full-length ß-amyloid precursor protein (APP), overexpression of ERRα inhibited the amyloidogenic processing of APP and consequently reduced Aß1-40/1-42 level. ERRα overexpression also attenuated Tau phosphorylation at selective sites, with the concomitant reduction of glycogen synthase kinase 3ß (GSK3ß) activity. Interestingly, alterations of APP processing and Tau phosphorylation induced by hydrogen peroxide were reversed by ERRα overexpression in HEK/APP cells. These results indicated that ERRα plays a functional role in AD pathology. By attenuating both amyloidogenesis and Tau phosphorylation, ERRα may serve as a potential therapeutic target for AD.
Assuntos
Doença de Alzheimer/metabolismo , Receptores de Estrogênio/biossíntese , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/genética , Animais , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Receptores de Estrogênio/genética , Proteínas tau/antagonistas & inibidores , Proteínas tau/biossíntese , Receptor ERRalfa Relacionado ao EstrogênioRESUMO
The α-secretase "a disintegrin and metalloproteinase domain-containing protein" (ADAM10) is involved in the processing of amyloid precursor protein (APP). Upregulation of ADAM10 precludes the generation of neurotoxic ß-amyloid protein (Aß) and represents a plausible therapeutic strategy for Alzheimer's disease (AD). In this study, we explored compounds that can potentially promote the expression of ADAM10. Therefore, we performed high-throughput small-molecule screening in SH-SY5Y (human neuroblastoma) cells that stably express a luciferase reporter gene driven by the ADAM10 promoter, including a portion of its 5'-untranslated region (5'UTR). This has led to the discovery of cosmosiin (apigenin 7-O-ß-glucoside). Here, we report that in human cell lines (SH-SY5Y and HEK293), cosmosiin proportionally increased the levels of the immature and mature forms of the ADAM10 protein without altering its mRNA level. This effect was attenuated by translation inhibitors or by deleting the 5'UTR of ADAM10, suggesting that a translational mechanism was responsible for the increased levels of ADAM10. Luciferase deletion assays revealed that the first 144 nucleotides of the 5'UTR were necessary for mediating the cosmosiin-induced enhancement of ADAM10 expression in SH-SY5Y cells. Cosmosiin failed to increase the levels of the ADAM10 protein in murine cells, which lack native expression of the ADAM10 transcript containing the identified 5'UTR element. The potential signaling pathway may involve phosphatidylinositide 3-kinase (PI3K) because pharmacological inhibition of PI3K attenuated the effect of cosmosiin on the expression of the ADAM10 protein. Finally, cosmosiin attenuated Aß generation because the levels of Aß40/42 in HEK-APP cells were significantly reduced after cosmosiin treatment. Collectively, we found that the first 144 nucleotides of the ADAM10 5'UTR, and PI3K signaling, are involved in cosmosiin-induced enhancement of the expression of ADAM10 protein. These results suggest that cosmosiin may be a potential therapeutic agent in the treatment of AD.