Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Biochem ; 687: 115430, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38147947

RESUMO

Fritillaria ussuriensis Maxim is one of the traditional Chinese valuable herbs, which is the dried bulb of Fritillaria, a plant of the lily family. The identification of authenticity about F. ussuriensis is still technically challenging. In this study, visual identification was performed by ring-mediated isothermal amplification and nucleic acid colloidal gold techniques. Firstly, multiple sequence comparative analysis was performed by DNAMAN to find the differential sites of F. ussuriensis and its mixed pseudo-products, and the specific identification primers of F. ussuriensis were designed. Genomic DNA was extracted by the modified CTAB method, and the reaction system and reaction conditions were optimized to construct LAMP for the visual detection of F. ussuriensis, meanwhile, the genuine product was cloned and the extracted plasmid was sequenced. The specificity and sensitivity were detected, and also verified by nucleic acid colloidal gold method, and 20 commercially available samples were tested. The extracted DNA met the requirements of the experiment, and the genuine F. ussuriensis PCR product titrated on a test strip showed two bands on the T and C lines, while the counterfeit and negative control showed only one band on the C line, which matched the LAMP results. The specificity was 100 %, and the sensitivity of LAMP assay was up to 0.01 ng µL-1, while that of colloidal gold assay was 0.1 ng µL-1, thus the LAMP assay had high sensitivity. 14 out of 20 commercially available samples of F. ussuriensis were qualified, and 6 were unqualified, and the results of the two methods of identification were consistent. In this study, the combined detection method of LAMP and colloidal gold for nucleic acid was established to be specific, rapid, precise and visualized, which can provide a new technical idea for the detection of F. ussuriensis.


Assuntos
Fritillaria , Ácidos Nucleicos , Fritillaria/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Primers do DNA/genética , DNA , Sensibilidade e Especificidade
2.
J Environ Manage ; 321: 115993, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985260

RESUMO

The social cost of carbon is a tool for assessing the appropriateness of emission reduction measures and climate policy, and is affected by socioeconomic and climatic factors. This study aimed to explore the impact of socioeconomic factors and climate on the social cost of carbon; to this end, this study considered Chinese provinces as the focus of research. This study constructed an integrated framework for carbon emissions considering socioeconomic and climatic factors, which consisted of shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs). Subsequently, social cost of the carbon estimation model was used to calculate the social cost of carbon for China's provinces from 2022 to 2100 under different carbon emission scenarios. The results show that: under most carbon emission scenarios, provinces with a high social cost of carbon are located in the eastern developed region. For instance, Jiangsu and Guangdong had the highest values of 6.31 $/tC. Second, SSPs that are highly dependent on fossil fuels have a high social cost of carbon, which is higher than 60 $/tC in 2022 in China. The social cost of carbon under other SSPs is at a fluctuating value of 40 $/tC. Third, in terms of RCPs, the social cost of carbon for the middle baseline emission scenario (RCP6.0) is considerably lower than that for the high baseline emission scenario (RCP8.0), and the difference between them is 3.7 times that of two medium emission scenarios (RCP6.0 and RCP4.5). Fourth, there is a substantial difference between the dynamic and fixed discount rates in the social cost of carbon in the same scenario. Studying the impact of socioeconomic and climatic factors on the social cost of carbon will help in its regulation and provide a scientific basis for Chinese provinces to optimize climate policies and emission reduction measures.


Assuntos
Carbono , Clima , Carbono/análise , Dióxido de Carbono/análise , China , Combustíveis Fósseis , Fatores Socioeconômicos
3.
Environ Sci Pollut Res Int ; 31(19): 27710-27729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514593

RESUMO

Accurate assessment of ecosystem service (ES) supply, demand, and flow is essential for identifying and enhancing the ES supply-demand relationship and promoting regional sustainable development. Based on the InVEST model, supply-demand ratio, coupling coordination analysis, breakpoint and field strength model, and GIS spatial analysis method, we evaluated the supply and demand of water yield, food supply, carbon storage, and soil conservation service in the Loess Plateau in 2000 and 2020 and analyzed the supply-demand relationship before and after considering the interregional ecosystem service flow (ESF). The results showed that (1) from 2000 to 2020, the supply and demand of the four types of ESs in the Loess Plateau increased. Before considering ESF, the surplus degree in water yield, food supply, and soil conservation increased, and carbon storage decreased. In most counties, the coupling coordination between the supply and demand of the soil conservation is mostly extreme incoordination and moderate incoordination, and other types of ESs are mostly reluctant coordination and moderate incoordination. The degree of incoordination in water yield and soil conservation have eased, while food supply and carbon storage have strengthened. For the comprehensive supply-demand relationship of ES, the degree of surplus and coordination increased, with most counties were in a state of surplus and coordination. (2) Water yield and soil conservation services flow primarily to the western and northwestern portions of the Loess Plateau, with a decrease in the number of flow paths but an increase in the total flow rate for the former and a decrease in flow paths and total flow rate for the latter. The food supply and carbon storage flow in all directions and the total flow rate increases, with a significant increase in the number of flow paths for carbon storage. (3) After considering ESF, the supply-demand relationship of each type of ES and the comprehensive ES supply-demand relationship are changed, in which the degree of surplus and coordination of deficit counties are significantly improved, and some counties even become surplus or improve the level of coordination. After considering ESF, the supply-demand ratio changes even more relative to the degree of coupling coordination. This study is of great significance for identifying the cross-regional transfer pattern of ES, understanding in-depth the dynamic supply-demand relationship of ES, and mitigating the mismatch between supply and demand of ES. It provides a scientific and objective theoretical basis for promoting regional sustainable development.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Solo
4.
Food Chem ; 444: 138673, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330615

RESUMO

This study applied and validated the Multiplex-PCR method to identify the authenticity of duck blood and four common adulterated animal blood varieties. To this end, the genomic DNAs of duck blood and its counterfeit products were extracted using an efficient high-throughput extraction method. Specific primers were designed using the cytochrome b gene. The reaction system and conditions of a multiplex (namely, Five-plex) PCR were optimized, and the proposed methodology was verified, proving its good specificity, repeatability, and sensitivity. The Five-plex PCR system detected nine duck blood samples sold in the local market, revealing the adulteration of duck blood products. The Multiplex-PCR system can accurately and quickly detect adulterated animal blood in duck blood products, effectively finding counterfeits and identifying the authenticity of genuine duck blood products.


Assuntos
Patos , Reação em Cadeia da Polimerase Multiplex , Animais , Patos/genética , Reação em Cadeia da Polimerase Multiplex/métodos , DNA/genética , Primers do DNA
5.
Food Funct ; 15(10): 5287-5299, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38639730

RESUMO

Catechol-O-methyltransferase (COMT) plays a central role in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs and hormones having catecholic structures. Its inhibitors are used in clinical practice to treat Parkinson's disease. In this study, a fluorescence-based visualization inhibitor screening method was developed to assess the inhibition activity on COMT both in vitro and in living cells. Following the screening of 94 natural products, Pu-erh tea extract exhibited the most potent inhibitory effect on COMT with an IC50 value of 0.34 µg mL-1. In vivo experiments revealed that Pu-erh tea extract substantially hindered COMT-mediated levodopa metabolism in rats, resulting in a significant increase in levodopa levels and a notable decrease in 3-O-methyldopa in plasma. Subsequently, the chemical components of Pu-erh tea were analyzed using UHPLC-Q-Exactive Orbitrap HRMS, identifying 24 major components. Among them, epigallocatechin gallate, gallocatechin gallate, epicatechin gallate, and catechin gallate exhibited potent inhibition of COMT activity with IC50 values from 93.7 nM to 125.8 nM and were the main bioactive constituents in Pu-erh tea responsible for its COMT inhibition effect. Inhibition kinetics analyses and docking simulations revealed that these compounds competitively inhibit COMT-mediated O-methylation at the catechol site. Overall, this study not only explained how Pu-erh tea catechins inhibit COMT, suggesting Pu-erh tea as a potential dietary intervention for Parkinson's disease, but also introduced a new strategy for discovering COMT inhibitors more effectively.


Assuntos
Catequina , Inibidores de Catecol O-Metiltransferase , Catecol O-Metiltransferase , Levodopa , Extratos Vegetais , Ratos Sprague-Dawley , Chá , Animais , Ratos , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Levodopa/metabolismo , Chá/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Masculino , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Camellia sinensis/química , Simulação de Acoplamento Molecular
6.
J Ethnopharmacol ; 321: 117553, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065349

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fei-Yan-Qing-Hua decoction (FYQHD), derived from the renowned formula Ma Xing Shi Gan tang documented in Zhang Zhong Jing's "Treatise on Exogenous Febrile Disease" during the Han Dynasty, has demonstrated notable efficacy in the clinical treatment of pneumonia resulting from bacterial infection. However, its molecular mechanisms underlying the therapeutic effects remains elusive. AIM OF THE STUDY: This study aimed to investigate the protective effects of FYQHD against lipopolysaccharide (LPS) and carbapenem-resistant Klebsiella pneumoniae (CRKP)-induced sepsis in mice and to elucidate its specific mechanism of action. MATERIALS AND METHODS: Sepsis models were established in mice through intraperitoneal injection of LPS or CRKP. FYQHD was administered via gavage at low and high doses. Serum cytokines, bacterial load, and pathological damage were assessed using enzyme-linked immunosorbent assay (ELISA), minimal inhibitory concentration (MIC) detection, and hematoxylin and eosin staining (H&E), respectively. In vitro, the immunoregulatory effects of FYQHD on macrophages were investigated through ELISA, MIC, quantitative real-time PCR (Q-PCR), immunofluorescence, Western blot, and a network pharmacological approach. RESULTS: The application of FYQHD in the treatment of LPS or CRKP-induced septic mouse models revealed significant outcomes. FYQHD increased the survival rate of mice exposed to a lethal dose of LPS to 33.3%, prevented hypothermia (with a rise of 3.58 °C), reduced pro-inflammatory variables (including TNF-α, IL-6, and MCP-1), and mitigated tissue damage in LPS or CRKP-induced septic mice. Additionally, FYQHD decreased bacterial load in CRKP-infected mice. In vitro, FYQHD suppressed the expression of inflammatory cytokines in macrophages activated by LPS or HK-CRKP. Mechanistically, FYQHD inhibited the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby suppressing the translational level of inflammatory cytokines. Furthermore, it reduced the expression of HMGB1/RAGE, a positive feedback loop in the inflammatory response. Moreover, FYQHD was found to enhance the phagocytic activity of macrophages by upregulating the expression of phagocytic receptors such as CD169 and SR-A1. CONCLUSION: FYQHD provides protection against bacterial sepsis by concurrently inhibiting the inflammatory response and augmenting the phagocytic ability of immune cells.


Assuntos
Proteína HMGB1 , Sepse , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Proteína HMGB1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Fagocitose , Sepse/tratamento farmacológico
7.
Int Immunopharmacol ; 132: 111889, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531202

RESUMO

Host-directed therapy (HDT) is a new adjuvant strategy that interfere with host cell factors that are required by a pathogen for replication or persistence. In this study, we assessed the effect of dehydrozaluzanin C-derivative (DHZD), a modified compound from dehydrozaluzanin C (DHZC), as a potential HDT agent for severe infection. LPS-induced septic mouse model and Carbapenem resistant Klebsiella pneumoniae (CRKP) infection mouse model was used for testing in vivo. RAW264.7 cells, mouse primary macrophages, and DCs were used for in vitro experiments. Dexamethasone (DXM) was used as a positive control agent. DHZD ameliorated tissue damage (lung, kidney, and liver) and excessive inflammatory response induced by LPS or CRKP infection in mice. Also, DHZD improved the hypothermic symptoms of acute peritonitis induced by CRKP, inhibited heat-killed CRKP (HK-CRKP)-induced inflammatory response in macrophages, and upregulated the proportions of phagocytic cell types in lungs. In vitro data suggested that DHZD decreases LPS-stimulated expression of IL-6, TNF-α and MCP-1 via PI3K/Akt/p70S6K signaling pathway in macrophages. Interestingly, the combined treatment group of DXM and DHZD had a higher survival rate and lower level of IL-6 than those of the DXM-treated group; the combination of DHZD and DXM played a synergistic role in decreasing IL-6 secretion in sera. Moreover, the phagocytic receptor CD36 was increased by DHZD in macrophages, which was accompanied by increased bacterial phagocytosis in a clathrin- and actin-dependent manner. This data suggests that DHZD may be a potential drug candidate for treating bacterial infections.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Macrófagos , Fagocitose , Sepse , Animais , Camundongos , Fagocitose/efeitos dos fármacos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células RAW 264.7 , Sepse/tratamento farmacológico , Sepse/imunologia , Masculino , Lipopolissacarídeos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
8.
Environ Sci Pollut Res Int ; 30(12): 35307-35325, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527548

RESUMO

Accurate identification of priority areas for ecological restoration is an important prerequisite for ecological protection and restoration, but it is a current challenge in landscape planning. Northern Shaanxi, which is located in the middle of the Loess Plateau in China, was selected as a study area in this paper. A three-dimensional framework including natural potential, human disturbance, and landscape pattern factors was used to construct an ecological security evaluation index system, and spatial principal component analysis (SPCA) was used to quantitatively evaluate the ecological security levels of the study area. The ecological security assessment result was used as a resistance surface, and landscape elements were identified by morphological spatial pattern analysis (MSPA), minimum cumulative resistance (MCR) model and the gravity model. On this basis, priority areas for ecological restoration were identified by considering ecosystem security and the matching degree of landscape elements. The resulting area with low and moderately low security levels was 27,574.87 km2 in size, accounting for 34.48% of the total study area, and the ecological security situation was not ideal. We identified seventeen ecological sources with an area of 5789.36 km2, and the important ecological sources were mainly distributed in the south of the study area. We identified one hundred and thirty-six potential ecological corridors with a total length of 7431.12 km, including 16 important ecological corridors with a length of 1279.43 km. We also identified 83 ecological nodes, including 17 important ecological nodes. We found that the high matching degree of landscape elements included four watersheds with an area of 7571.17 km2, mainly distributed in the southern part of the study area. Fifty-one basins with a low matching degree of landscape elements were identified, covering an area of 50,399.44 km2 and mainly distributed in the west and north of the study area. We identified three levels of areas to be restored, of which the level I ecological restoration priority area was the smallest, at 7047.61 km2. The areas of the level II ecological restoration priority area and the level III ecological restoration priority area were 20,379.35 km2 and 27,866.35 km2, respectively. The two areas were large and mainly distributed in the west and north of the study area. We discussed ecological restoration strategies for different levels of ecological restoration priority areas and provided new methods for identifying priority ecological restoration areas in the future.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , China , Análise Espacial , Análise de Componente Principal , Ecologia
9.
Pharmaceutics ; 15(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37631310

RESUMO

Tuberculosis (TB), one of the top ten causes of death globally induced by the infection of Mycobacterium tuberculosis (Mtb), remains a grave public health issue worldwide. With almost one-third of the world's population getting infected by Mtb, between 5% and 10% of these infected individuals are predicted to develop active TB disease, which would not only result in severe tissue damage and necrosis, but also pose serious threats to human life. However, the exact molecular mechanisms underlying the pathogenesis and immunology of TB remain unclear, which significantly restricts the effective control of TB epidemics. Despite significant advances in current detection technologies and treatments for TB, there are still no appropriate solutions that are suitable for simultaneous, early, rapid, and accurate screening of TB. Various cellular events can perturb the development and progression of TB, which are always associated with several specific molecular signaling events controlled by dysregulated gene expression patterns. Long non-coding RNAs (lncRNAs), a kind of non-coding RNA (ncRNA) with a transcript of more than 200 nucleotides in length in eukaryotic cells, have been found to regulate the expression of protein-coding genes that are involved in some critical signaling events, such as inflammatory, pathological, and immunological responses. Increasing evidence has claimed that lncRNAs might directly influence the susceptibility to TB, as well as the development and progression of TB. Therefore, lncRNAs have been widely expected to serve as promising molecular biomarkers and therapeutic targets for TB. In this review, we summarized the functions of lncRNAs and their regulatory roles in the development and progression of TB. More importantly, we widely discussed the potential of lncRNAs to act as TB biomarkers, which would offer new possibilities in novel diagnostic strategy exploration and benefit the control of the TB epidemic.

10.
Front Immunol ; 14: 1156239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153576

RESUMO

As an essential micronutrient, manganese plays an important role in the physiological process and immune process. In recent decades, cGAS-STING pathway, which can congenitally recognize exogenous and endogenous DNA for activation, has been widely reported to play critical roles in the innate immunity against some important diseases, such as infections and tumor. Manganese ion (Mn2+) has been recently proved to specifically bind with cGAS and activate cGAS-STING pathway as a potential cGAS agonist, however, is significantly restricted by the low stability of Mn2+ for further medical application. As one of the most stable forms of manganese, manganese dioxide (MnO2) nanomaterials have been reported to show multiple promising functions, such as drug delivery, anti-tumor and anti-infection activities. More importantly, MnO2 nanomaterials are also found to be a potential candidate as cGAS agonist by transforming into Mn2+, which indicates their potential for cGAS-STING regulations in different diseased conditions. In this review, we introduced the methods for the preparation of MnO2 nanomaterials as well as their biological activities. Moreover, we emphatically introduced the cGAS-STING pathway and discussed the detailed mechanisms of MnO2 nanomaterials for cGAS activation by converting into Mn2+. And we also discussed the application of MnO2 nanomaterials for disease treatment by regulating cGAS-STING pathway, which might benefit the future development of novel cGAS-STING targeted treatments based on MnO2 nanoplatforms.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Manganês , Compostos de Manganês/farmacologia , Óxidos/uso terapêutico , Nucleotidiltransferases/metabolismo , Neoplasias/tratamento farmacológico
11.
Front Immunol ; 14: 1128840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926351

RESUMO

Manganese (Mn), a nutrient inorganic trace element, is necessary for a variety of physiological processes of animal body due to their important roles in oxidative regulation effects and other aspects of activities. Moreover, manganese ion (Mn2+) has widely reported to be crucial for the regulations of different immunological responses, thus showing promising application as potential adjuvants and immunotherapeutics. Taking the advantages of Mn-based biological and immunological activities, Manganese dioxide nanoparticles (MnO2 NPs) are a new type of inorganic nanomaterials with numerous advantages, including simple preparation, low cost, environmental friendliness, low toxicity, biodegradable metabolism and high bioavailability. MnO2 NPs, as a kind of drug carrier, have also shown the ability to catalyze hydrogen peroxide (H2O2) to produce oxygen (O2) under acidic conditions, which can enhance the efficacy of radiotherapy, chemotherapy and other therapeutics for tumor treatment by remodeling the tumor microenvironment. More importantly, MnO2 NPs also play important roles in immune regulations both in innate and adaptive immunity. In this review, we summarize the biological activities of Manganese, followed by the introduction for the biological and medical functions and mechanisms of MnO2 NPs. What's more, we emphatically discussed the immunological regulation effects and mechanisms of MnO2 NPs, as well as their potentials to serve as adjuvants and immunomodulators, which might benefit the development of novel vaccines and immunotherapies for more effective disease control.


Assuntos
Nanopartículas , Vacinas , Animais , Compostos de Manganês/farmacologia , Compostos de Manganês/metabolismo , Manganês , Óxidos/farmacologia , Peróxido de Hidrogênio/metabolismo , Nanopartículas/metabolismo , Oxigênio , Imunoterapia
12.
Front Nutr ; 10: 1116051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819694

RESUMO

Autophagy, one of the major intracellular degradation systems, plays an important role in maintaining normal cellular physiological functions and protecting organisms from different diseases. Selenium (Se), an essential trace element, is involved in many metabolic regulatory signaling events and plays a key role in human health. In recent years, selenium nanoparticles (Se NPs) have attracted increasing attentions in biomedical field due to their low toxicity, high bioavailability and high bioactivity. Taking the advantage of their advanced biological activities, Se NPs can be used alone as potential therapeutic agents, or combine with other agents and served as carriers for the development of novel therapeutics. More interestingly, Se NPs have been widely reported to affect autophagy signaling, which therefor allow Se NPs to be used as potential therapeutic agents against different diseases. Here, this review suggested the relationships between Se and autophagy, followed by the trends and recent progresses of Se NPs for autophagy regulation in different diseased conditions. More importantly, this work discussed the roles and potential mechanisms of Se NPs in autophagy regulating, which might enhance our understanding about how Se NPs regulate autophagy for potential disease treatment. This work is expected to promote the potential application of Se NPs as novel autophagy regulators, which might benefit the development of novel autophagy associated therapeutics.

13.
Front Bioeng Biotechnol ; 10: 1036678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588948

RESUMO

Tuberculosis (TB), induced by the foxy Mycobacterium tuberculosis (Mtb), is still one of the top killers worldwide among infectious diseases. Although several antibiotics have been developed to significantly relieve the tuberculosis epidemics worldwide, there are still several important scientific challenges for tuberculosis. As one of the most critical issues for tuberculosis control, the accurate and timely diagnosis of tuberculosis is critical for the following therapy of tuberculosis and thus responsible for the effective control of drug-resistant tuberculosis. Current tuberculosis diagnostic methods in clinic are still facing the difficulties that they can't provide the rapid diagnostic results with high sensitivity and accuracy, which therefore requires the development of more effective novel diagnostic strategies. In recent decades, nanomaterials have been proved to show promising potentials for novel nanobiosensor construction based on their outstanding physical, chemical and biological properties. Taking these promising advantages, nanomaterial-based biosensors show the potential to allow the rapid, sensitive and accurate tuberculosis diagnosis. Here, aiming to increase the development of more effective tuberculosis diagnostic strategy, we summarized the current progress of nanobiosensors for potential tuberculosis diagnosis application. We discussed the different kind diagnostic targets for tuberculosis diagnosis based on nanobiosensors, ranging from the detection of bacterial components from M. tuberculosis, such as DNA and proteins, to the host immunological responses, such as specific cytokine production, and to the direct whole cell detection of M. tuberculosis. We believe that this review would enhance our understandings of nanobiosensors for potential tuberculosis diagnosis, and further promote the future research on nanobiosensor-based tuberculosis diagnosis to benefit the more effective control of tuberculosis epidemic.

14.
Pharmaceutics ; 14(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365168

RESUMO

Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.

15.
Animals (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359059

RESUMO

African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and fatal disease found in swine. However, the viral proteins and mechanisms responsible for immune evasion are poorly understood, which has severely hindered the development of vaccines. This review mainly focuses on studies involving the innate antiviral immune response of the host and summarizes the latest studies on ASFV genes involved in interferon (IFN) signaling and inflammatory responses. We analyzed the effects of candidate viral proteins on ASFV infection, replication and pathogenicity and identified potential molecular targets for novel ASFV vaccines. These efforts will contribute to the construction of novel vaccines and wonder therapeutics for ASF.

16.
J Behav Addict ; 10(3): 759-766, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469329

RESUMO

BACKGROUNDS AND AIMS: Internet addiction (IA) is a common internet-related addictive behavior. An enormous amount of previous research on IA disorders (IADs) have paid attention to the neural basis of abnormalities, while few studies have elucidated the neural distinctions of IA tendency in general population. METHODS: The current study examined the neural basis of IA tendency combining with voxel-based morphometry (VBM) from the average student body (N = 244). RESULTS: As the results presented, the gray matter density (GMD) of the left temporal-parietal junction (TPJ) was positively correlated with Internet Addiction Test (IAT) score. Further analysis revealed that critical thinking moderated the path between GMD in the TPJ and IA tendency. Specifically, the correlation between GMD in the TPJ and IA tendency was weaker for those with a higher critical thinking disposition. DISCUSSION AND CONCLUSION: Higher critical thinking show a hindering effect in susceptibility to IA based on the neural basis of temporal-parietal junction differences.


Assuntos
Comportamento Aditivo , Transtorno de Adição à Internet , Substância Cinzenta , Humanos , Internet , Estudantes , Pensamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA