Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 36(23): 2060-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26288010

RESUMO

Reversible addition-fragmentation chain transfer (RAFT) polymerization and characterization of an alkoxysilane acrylamide monomer using a trithiocarbonate chain transfer agent are described. Poly(N-[3-(trimethoxysilyl)propyl]acrylamide) (PTMSPAA) homopolymers are obtained with good control over the polymerization. A linear increase in the molecular weight is observed whereas the polydispersity values do not exceed 1.2 regardless of the monomer conversion. Moreover, PTMSPAA is used as a macro-RAFT agent to polymerize N-isopropylacrylamide (NIPAM). By varying the degree of polymerization of NIPAM within the block copolymer, different sizes of thermoresponsive particles are obtained. These particles are stabilized by the condensation of the alkoxysilane moieties of the polymers. Furthermore, a co-network of silica and PTMSPAA is prepared using the sol-gel process. After drying, transparent mesoporous hybrids are obtained with a surface area of up to 400 m(2) g(-1).


Assuntos
Resinas Acrílicas/química , Resinas Acrílicas/síntese química , Dióxido de Silício/química
2.
Phys Chem Chem Phys ; 17(43): 29124-33, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26464180

RESUMO

Sol-gel hybrids are inorganic/organic co-networks with nanoscale interactions between the components leading to unique synergistic mechanical properties, which can be tailored, via a selection of the organic moiety. Methacrylate based polymers present several benefits for class II hybrids (which exhibit formal covalent bonding between the networks) as they introduce great versatility and can be designed with a variety of chemical side-groups, structures and morphologies. In this study, the effect of high cross-linking density polymers on the structure-property relationships of hybrids generated using poly(3-trimethoxysilylpropyl methacrylate) (pTMSPMA) and tetraethyl orthosilicate (TEOS) was investigated. The complexity and fine scale of the co-network interactions requires the development of new analytical methods to understand how network evolution dictates the wide-ranging mechanical properties. Within this work we developed data manipulation techniques of acoustic-AFM and solid state NMR output that provide new approaches to understand the influence of the network structure on the macroscopic elasticity. The concentration of pTMSPMA in the silica sol affected the gelation time, ranging from 2 h for a hybrid made with 75 wt% inorganic with pTMSPMA at 2.5 kDa, to 1 minute for pTMSPMA with molecular weight of 30 kDa without any TEOS. A new mechanism of gelation was proposed based on the different morphologies derived by AC-AFM observations. We established that the volumetric density of bridging oxygen bonds is an important parameter in structure/property relationships in SiO2 hybrids and developed a method for determining it from solid state NMR data. The variation in the elasticity of pTMSPMA/SiO2 hybrids originated from pTMSPMA acting as a molecular spacer, thus decreasing the volumetric density of bridging oxygen bonds as the inorganic to organic ratio decreased.


Assuntos
Géis/química , Metacrilatos/química , Dióxido de Silício/química , Difusão Dinâmica da Luz , Módulo de Elasticidade , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Transição de Fase , Polímeros/química , Termogravimetria
3.
J Mater Sci Mater Med ; 26(2): 115, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25665841

RESUMO

The aim of this study was to propose and validate a new unified method for testing dissolution rates of bioactive glasses and their variants, and the formation of calcium phosphate layer formation on their surface, which is an indicator of bioactivity. At present, comparison in the literature is difficult as many groups use different testing protocols. An ISO standard covers the use of simulated body fluid on standard shape materials but it does not take into account that bioactive glasses can have very different specific surface areas, as for glass powders. Validation of the proposed modified test was through round robin testing and comparison to the ISO standard where appropriate. The proposed test uses fixed mass per solution volume ratio and agitated solution. The round robin study showed differences in hydroxyapatite nucleation on glasses of different composition and between glasses of the same composition but different particle size. The results were reproducible between research facilities. Researchers should use this method when testing new glasses, or their variants, to enable comparison between the literature in the future.


Assuntos
Apatitas/química , Materiais Biomiméticos/química , Materiais Biomiméticos/normas , Líquidos Corporais/química , Cerâmica/química , Vidro/química , Teste de Materiais/normas , Apatitas/normas , Cerâmica/análise , Cerâmica/normas , Vidro/análise , Vidro/normas , Internacionalidade , Teste de Materiais/métodos , Tamanho da Partícula , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Biomater Adv ; 134: 112561, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35523641

RESUMO

Skin has excellent capacity to regenerate, however, in the event of a large injury or burn skin grafts are required to aid wound healing. The regenerative capacity further declines with increasing age and can be further exacerbated with bacterial infection leading to a chronic wound. Engineered skin substitutes can be used to provide a temporary template for the damaged tissue, to prevent/combat bacterial infection and promote healing. In this study, the sol-gel process and electrospinning were combined to fabricate 3D cotton-wool-like sol-gel bioactive glass fibers that mimic the fibrous architecture of skin extracellular matrix (ECM) and deliver metal ions for antibacterial (silver) and therapeutic (calcium and silica species) actions for successful healing of wounds. This study investigated the effects of synthesis and process parameters, in particular sintering temperature on the fiber morphology, the incorporation and distribution of silver and the degradation rate of fibers. Silver nitrate was found to decompose into silver nanoparticles within the glass fibers upon calcination. Furthermore, with increasing calcination temperature the nanoparticles increased in size from 3 nm at 600 °C to ~25 nm at 800 °C. The antibacterial ability of the Ag-doped glass fibers decreased as a function of the glass calcination temperature. The degradation products from the Ag-doped 3D non-woven sol-gel glass fibers were also found to promote fibroblast proliferation thus demonstrating their potential for use in skin regeneration.


Assuntos
Nanopartículas Metálicas , Antibacterianos/farmacologia , Compostos de Cálcio , Nanopartículas Metálicas/uso terapêutico , Silicatos , Prata/farmacologia , Cicatrização
5.
Mater Sci Eng C Mater Biol Appl ; 126: 112124, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082941

RESUMO

The repair of articular cartilage lesions in weight-bearing joints remains as a significant challenge due to the low regenerative capacity of this tissue. Hydrogels are candidates to repair lesions as they have similar properties to cartilage extracellular matrix but they are unable to meet the mechanical and biological requirements for a successful outcome. Here, we reinforce hyaluronic acid (HA) hydrogels with 13-93-lithium bioactive glass micro- and nanofibres produced by laser spinning. The glass fibres are a reinforcement filler and a platform for the delivery of therapeutic lithium-ions. The elastic modulus of the composites is more than three times higher than in HA hydrogels. Modelling of the reinforcement corroborates the experimental results. ATDC5 chondrogenic cells seeded on the composites are viable and more proliferation occurs on the hydrogels containing fibres than in HA hydrogels alone. Furthermore, the chondrogenic behavior on HA constructs with fibres containing lithium is more marked than in hydrogels with no-lithium fibres.


Assuntos
Ácido Hialurônico , Nanofibras , Hidrogéis , Lasers , Lítio
6.
J Biomater Appl ; 32(1): 104-113, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28622746

RESUMO

Wnt-signalling cascade is one of the crucial pathways involved in the development and homeostasis of cartilage. Influencing this pathway can potentially contribute to improved cartilage repair or regeneration. One key molecular regulator of the Wnt pathway is the glycogen synthase kinase-3 enzyme, the inhibition of which allows initiation of the signalling pathway. This study aims to utilise a binary SiO2-Li2O sol-gel derived glass for controlled delivery of lithium, a known glycogen synthase kinase-3 antagonist. The effect of the dissolution products of the glass on chondrogenic differentiation in an in vitro 3D pellet culture model is reported. Dissolution products that contained 5 mM lithium and 3.5 mM silicon were capable of inducing chondrogenic differentiation and hyaline cartilaginous matrix formation without the presence of growth factors such as TGF-ß3. The results suggest that sol-gel derived glass has the potential to be used as a delivery vehicle for therapeutic lithium ions in cartilage regeneration applications.


Assuntos
Condrogênese/efeitos dos fármacos , Preparações de Ação Retardada/química , Cartilagem Hialina/citologia , Compostos de Lítio/química , Lítio/administração & dosagem , Dióxido de Silício/química , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Cartilagem Hialina/efeitos dos fármacos , Cartilagem Hialina/fisiologia , Lítio/farmacologia , Camundongos , Transição de Fase , Regeneração/efeitos dos fármacos , Engenharia Tecidual
7.
J Solgel Sci Technol ; 81(1): 84-94, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009741

RESUMO

ABSTRACT: This work reports the synthesis of lithium-silicate glass, containing 10 mol% of Li 2 O by the sol-gel process, intended for the regeneration of cartilage. Lithium citrate and lithium nitrate were selected as lithium precursors. The effects of the lithium precursor on the sol-gel process, and the resulting glass structure, morphology, dissolution behaviour, chondrocyte viability and proliferation, were investigated. When lithium citrate was used, mesoporous glass containing lithium as a network modifier was obtained, whereas the use of lithium nitrate produced relatively dense glass-ceramic with the presence of lithium metasilicate, as shown by X-ray diffraction, 29 Si and 7 Li MAS NMR and nitrogen sorption data. Nitrate has a better affinity for lithium than citrate, leading to heterogeneous crystallisation from the mesopores, where lithium salts precipitated during drying. Citrate decomposed at a lower temperature, where the crystallisation of lithium-silicate crystal is not thermodynamically favourable. Upon decomposition of the citrate, a solid-state salt metathesis reaction between citrate and silanol occurred, followed by the diffusion of lithium within the structure of the glass. Both glass and glass-ceramic released silica and lithium ions in culture media, but release rate was lower for the glass-ceramic. Both samples did not affect chondrocyte viability and proliferation.

8.
Nat Chem ; 9(2): 157-163, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28282052

RESUMO

Engineering bioelectronic components and set-ups that mimic natural systems is extremely challenging. Here we report the design of a protein-only redox film inspired by the architecture of bacterial electroactive biofilms. The nanowire scaffold is formed using a chimeric protein that results from the attachment of a prion domain to a rubredoxin (Rd) that acts as an electron carrier. The prion domain self-assembles into stable fibres and provides a suitable arrangement of redox metal centres in Rd to permit electron transport. This results in highly organized films, able to transport electrons over several micrometres through a network of bionanowires. We demonstrate that our bionanowires can be used as electron-transfer mediators to build a bioelectrode for the electrocatalytic oxygen reduction by laccase. This approach opens opportunities for the engineering of protein-only electron mediators (with tunable redox potentials and optimized interactions with enzymes) and applications in the field of protein-only bioelectrodes.


Assuntos
Metaloproteínas/química , Nanofios/química , Príons/química , Rubredoxinas/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Lacase/química , Lacase/metabolismo , Mathanococcus/metabolismo , Microscopia de Força Atômica , Oxirredução
9.
Chem Commun (Camb) ; 52(1): 136-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26503757

RESUMO

The judicious compositional and structural design of a branched co-polymeric surfactant allows for the production of highly stable oil in water emulsion droplets with reversible electrostatic aggregation behaviour.

10.
J Mater Chem B ; 4(36): 6032-6042, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263492

RESUMO

Bioglass® was the first synthetic material capable of bonding with bone without fibrous encapsulation, and fulfils some of the criteria of an ideal synthetic bone graft. However, it is brittle and toughness is required. Here, we investigated hybrids consisting of co-networks of high cross-linking density polymethacrylate and silica (class II hybrid) as a potential new generation of scaffold materials. Poly(3-(methoxysilyl)propyl methacrylate) (pTMSPMA) and tetraethyl orthosilicate (TEOS) were used as sol-gel precursors and hybrids were synthesised with different inorganic to organic ratios (Ih). The hybrids were nanoporous, with a modal pore diameter of 1 nm. At Ih = 50%, the release of silica was controlled by varying the molecular weight of pTMSPMA while retaining a specific surface area above 100 m2 g-1. Strain to failure increased to 14.2%, for Ih = 50% using a polymer of 30 kDa, compared to 4.5% for pure glass. The modulus of toughness (UT) increased from 0.73 (pure glass) to 2.64 GPa. Although, the hybrid synthesised in this report did not contain calcium, pTMSPMA/SiO2 hybrid was found to nucleate bone-like mineral on its surface after 1 week of immersion in simulated body fluid (SBF), whereas pure silica sol-gel glass did not. This increase in apatite forming ability was due to the ion-dipole complexation of calcium with the ester moieties of the polymer that were exposed after release of soluble silica from TEOS. No adverse cytotoxicity for MC3T3-E1 osteoblast-like cells was detected and improved cell attachment was observed, compared to a pure silica gel. pTMSPMA/SiO2 hybrids have potential for the regeneration of hard tissue as they overcome the major drawbacks of pure inorganic substrates while retaining cell attachment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA