Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 6(7): 1802094, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30989030

RESUMO

Recent advances in perovskite solar cells (PSCs) have resulted in greater than 23% efficiency with superior advantages such as flexibility and solution-processability, allowing PSCs to be fabricated by a high-throughput and low-cost roll-to-roll (R2R) process. The development of scalable deposition processes is crucial to realize R2R production of flexible PSCs. Gravure printing is a promising candidate with the benefit of direct printing of the desired layer with arbitrary shape and size by using the R2R process. Here, flexible PSCs are fabricated by gravure printing. Printing inks and processing parameters are optimized to obtain smooth and uniform films. SnO2 nanoparticles are uniformly printed by reducing surface tension. Perovskite layers are successfully formed by optimizing the printing parameters and subsequent antisolvent bathing. 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene is also successfully printed. The all-gravure-printed device exhibits 17.2% champion efficiency, with 15.5% maximum power point tracking efficiency for 1000 s. Gravure-printed flexible PSCs based on a two-step deposition of perovskite layer are also demonstrated. Furthermore, a R2R process based on the gravure printing is demonstrated. The champion efficiency of 9.7% is achieved for partly R2R-processed PSCs based on a two-step fabrication of the perovskite layer.

2.
Chem Commun (Camb) ; (17): 1812-3, 2002 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-12271621

RESUMO

The selenium(IV) diimide AdN=Se=NAd (Ad = 1-adamantyl) adopts a monomeric structure with a Z,E configuration in the solid state whereas the seleninylamine OSe(mu-NBut)2SeO crystallizes as the cis-dimer.

3.
Inorg Chem ; 43(6): 2097-104, 2004 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15018533

RESUMO

The thermal decomposition of Se(NAd)(2) (Ad = 1-adamantyl) in THF was monitored by (77)Se NMR and shown to give the novel cyclic selenium imide Se(3)(NAd)(2) as one of the products. An X-ray structural determination showed that Se(3)(NAd)(2) is a puckered five-membered ring with d(Se-Se) = 2.404(1) A and |d(Se-N)| = 1.873(4) A. On the basis of (77)Se NMR data, other decomposition products include the six-membered ring Se(3)(NAd)(3), and the four-membered rings AdNSe(micro-NAd)(2)SeO and OSe(micro-NAd)(2)SeO. The energies for the cyclodimerization of E(NR)(2) and RNEO (E = S, Se; R = H, Me, (t)Bu, SiMe(3)), and the cycloaddition reactions of RNSeO with E(NR)(2), RNSO(2) with Se(NR)(2), and S(NR)(2) with Se(NR)(2) have been calculated at MP2, CCSD, and CCSD(T) levels of theory using the cc-pVDZ basis sets and B3PW91/6-31G* optimized geometries. Sulfur(IV) and selenium(IV) diimide monomers are predicted to be stable, the sole exception being Se(NSiMe(3))(2) that shows a tendency toward cyclodimerization. The cyclodimerization energy for RNSeO and the cycloaddition reaction energies of RNSeO with Se(NR)(2) as well as that of RNSO(2) with Se(NR)(2) are negative, consistent with the observed formation of OSe(micro-N(t)Bu)(2)SeO, OSe(micro-N(t)Bu)(2)SeN(t)Bu, and O(2)S(micro-N(t)Bu)(2)SeN(t)Bu, respectively. Cycloaddition is unlikely when one of the reactants is a sulfur(IV) diimide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA