Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 588(7836): 95-100, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32814903

RESUMO

Global food demand is rising, and serious questions remain about whether supply can increase sustainably1. Land-based expansion is possible but may exacerbate climate change and biodiversity loss, and compromise the delivery of other ecosystem services2-6. As food from the sea represents only 17% of the current production of edible meat, we ask how much food we can expect the ocean to sustainably produce by 2050. Here we examine the main food-producing sectors in the ocean-wild fisheries, finfish mariculture and bivalve mariculture-to estimate 'sustainable supply curves' that account for ecological, economic, regulatory and technological constraints. We overlay these supply curves with demand scenarios to estimate future seafood production. We find that under our estimated demand shifts and supply scenarios (which account for policy reform and technology improvements), edible food from the sea could increase by 21-44 million tonnes by 2050, a 36-74% increase compared to current yields. This represents 12-25% of the estimated increase in all meat needed to feed 9.8 billion people by 2050. Increases in all three sectors are likely, but are most pronounced for mariculture. Whether these production potentials are realized sustainably will depend on factors such as policy reforms, technological innovation and the extent of future shifts in demand.


Assuntos
Pesqueiros/provisão & distribuição , Abastecimento de Alimentos/estatística & dados numéricos , Oceanos e Mares , Alimentos Marinhos/provisão & distribuição , Desenvolvimento Sustentável/tendências , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Pesqueiros/economia , Peixes/crescimento & desenvolvimento , Abastecimento de Alimentos/economia , Humanos , Moluscos/crescimento & desenvolvimento , Alimentos Marinhos/economia , Desenvolvimento Sustentável/economia , Fatores de Tempo
2.
PLoS One ; 15(9): e0237839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936800

RESUMO

Synthetic microfibers are found virtually everywhere in the environment, but emission pathways and quantities are poorly understood. By connecting regionalized global datasets on apparel production, use, and washing with emission and retention rates during washing, wastewater treatment, and sludge management, we estimate that 5.6 Mt of synthetic microfibers were emitted from apparel washing between 1950 and 2016. Half of this amount was emitted during the last decade, with a compound annual growth rate of 12.9%. Waterbodies received 2.9 Mt, while combined emissions to terrestrial environments (1.9 Mt) and landfill (0.6 Mt) were almost as large and are growing. Annual emissions to terrestrial environments (141.9 kt yr-1) and landfill (34.6 kt yr-1) combined are now exceeding those to waterbodies (167.2 kt yr-1). Improving access to wastewater treatment is expected to further shift synthetic microfiber emissions from waterbodies to terrestrial environments. Preventing emissions at the source would therefore be a more effective mitigation measure.


Assuntos
Plásticos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Têxteis , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA