Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sensors (Basel) ; 21(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801037

RESUMO

Humans respond cognitively and emotionally to the built environment. The modern possibility of recording the neural activity of subjects during exposure to environmental situations, using neuroscientific techniques and virtual reality, provides a promising framework for future design and studies of the built environment. The discipline derived is termed "neuroarchitecture". Given neuroarchitecture's transdisciplinary nature, it progresses needs to be reviewed in a contextualised way, together with its precursor approaches. The present article presents a scoping review, which maps out the broad areas on which the new discipline is based. The limitations, controversies, benefits, impact on the professional sectors involved, and potential of neuroarchitecture and its precursors' approaches are critically addressed.


Assuntos
Emoções , Realidade Virtual , Cognição , Humanos
2.
J Neurosci Res ; 98(6): 1232-1249, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32096570

RESUMO

Gap junctions (GJs) are widely distributed in brains across the animal kingdom. To visualize the GJ- coupled networks of two major mechanosensory neurons in the ganglia of medicinal leeches, we injected these cells with the GJ-permeable tracer Neurobiotin. When diffusion time was limited to only 30 min, tracer coupling was highly variable for both cells, suggesting a possible modulation of GJ permeability. In invertebrates the innexins (homologs of vertebrate pannexins) form the GJs. Because extracellular adenosine triphosphate (ATP) modulates pannexin and leech innexin hemichannel permeability and is released by leech glial cells following injury, we tested the effects of bath application of ATP after the injection of Neurobiotin and observed a significant increase in the number of neurons tracer coupled to the sensory neurons. This effect required the elevation of intracellular Ca2+ and could be produced by bath application of caffeine. Conversely, scavenging endogenous extracellular ATP with the ATPase apyrase decreased the number of coupled cells. ATP also increased electrical conductance and tracer permeability between the bilateral Retzius neurons. This modulatory effect of ATP on GJ coupling was blocked by siRNA knockdown of a P1-like adenosine receptor. Finally, exposure of leech ganglia to extracellular ATP induced a characteristic low frequency (<0.3 Hz) rhythmic bursting activity that was roughly synchronous among multiple neurons, a behavior that was significantly attenuated by the GJ blocker octanol. These findings highlight the mediation by ATP of a robust physiological mechanism for modifying neuronal circuits by rapidly recruiting neurons into active networks and entraining synchronized bursting activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Junções Comunicantes/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Cálcio/metabolismo , Sanguessugas
3.
Anal Chem ; 89(16): 8251-8258, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28692290

RESUMO

Mass spectrometry-based protein analysis has become an important methodology for proteogenomic mapping by providing evidence for the existence of proteins predicted at the genomic level. However, screening and identification of proteins directly on tissue samples, where histological information is preserved, remain challenging. Here we demonstrate that the ambient ionization source, nanospray desorption electrospray ionization (nanoDESI), interfaced with light microscopy allows for protein profiling directly on animal tissues at the microscopic scale. Peptide fragments for mass spectrometry analysis were obtained directly on ganglia of the medicinal leech (Hirudo medicinalis) without in-gel digestion. We found that a hypothetical protein, which is predicted by the leech genome, is highly expressed on the specialized neural cells that are uniquely found in adult sex segmental ganglia. Via this top-down analysis, a post-translational modification (PTM) of tyrosine sulfation to this neuropeptide was resolved. This three-in-one platform, including mass spectrometry, microscopy, and genome mining, provides an effective way for mappings of proteomes under the lens of a light microscope.


Assuntos
Espectrometria de Massas/métodos , Microscopia/métodos , Neuropeptídeos/química , Proteogenômica/métodos , Sequência de Aminoácidos , Animais , Gânglios/química , Hirudo medicinalis/química , Neuropeptídeos/metabolismo , Processamento de Proteína Pós-Traducional
4.
Proc Natl Acad Sci U S A ; 110(37): 14855-60, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23969833

RESUMO

There is immense cellular and molecular heterogeneity in biological systems. Here, we demonstrate the utility of integrating an inverted light microscope with an ambient ionization source, nanospray electrospray desorption ionization, attached to a high-resolution mass spectrometer to characterize the molecular composition of mouse spinal cords. We detected a broad range of molecules, including peptides and proteins, as well as metabolites such as lipids, sugars, and other small molecules, including S-adenosyl methionine and glutathione, through top-down MS. Top-down analysis revealed variation in the expression of Hb, including the transition from fetal to adult Hb and heterogeneity in Hb subunits consistent with the genetic diversity of the mouse models. Similarly, temporal changes to actin-sequestering proteins ß-thymosins during development were observed. These results demonstrate that interfacing microscopy with ambient ionization provides the means to perform targeted in situ ambient top-down mass spectral analysis to study the pattern of proteins, lipids, and sugars in biologically heterogeneous samples.


Assuntos
Microscopia/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Sequência de Aminoácidos , Animais , Padronização Corporal , Metabolismo dos Carboidratos , Feminino , Hemoglobinas/genética , Hemoglobinas/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Microscopia/instrumentação , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Medula Espinal/embriologia , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos , Timosina/genética , Timosina/metabolismo
5.
J Neurosci ; 33(42): 16673-83, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133270

RESUMO

Oppositely directed projections of some homologous neurons in the developing CNS of the medicinal leech (Hirudo verbana), such as the AP cells, undergo a form of contact-dependent homolog avoidance. Embryonic APs extend axons within the connective nerve toward adjacent ganglia, in which they meet and form gap junctions (GJs) with the oppositely directed axons of their segmental homologs, stop growing, and are later permanently retracted (Wolszon et al., 1994a,b). However, early deletion of an AP neuron leads to resumed growth and permanent maintenance of the projections of neighboring APs. Here we test the hypothesis that a GJ-based signaling mechanism is responsible for this instance of homolog avoidance. We demonstrate that selective knockdown of GJ gene Hve-inx1 expression in single embryonic APs, by expressing a short-hairpin interfering RNA, leads to continued growth of the projections of the cell toward, into, and beyond adjacent ganglia. Moreover, the projections of the APs in adjacent ganglia also resume growth, mimicking their responses to cell deletion. Continued growth was also observed when two different INX1 mutant transgenes that abolish dye coupling between APs were expressed. These include a mutant transgene that effectively downregulates all GJ plaques that include the INX1 protein and a closed channel INX1 mutant that retains the adhesive cellular binding characteristic of INX1 GJs but not the open channel pore function. Our results add GJ intercellular communication to the list of molecular signaling mechanisms that can act as mediators of growth-inhibiting cell-cell interactions that define the topography of neuronal arbors.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/fisiologia , Hirudo medicinalis/metabolismo , Neurônios/metabolismo , Animais , Axônios/fisiologia , Comunicação Celular/fisiologia , Drosophila
6.
Brain Behav Evol ; 83(1): 1-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603302

RESUMO

Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.


Assuntos
Evolução Biológica , Mapeamento Encefálico , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Anatomia Comparada , Animais , Humanos , Especificidade da Espécie
7.
J Neurosci ; 32(41): 14265-70, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055495

RESUMO

Fifteen of the 21 innexin (Inx) genes (Hve-inx) found in the genome of the medicinal leech, Hirudo verbana, are expressed in the CNS (Kandarian et al., 2012). Two are expressed pan-neuronally, while the others are restricted in their expression to small numbers of cells, in some cases reflecting the membership of known networks of electrically coupled and dye-coupled neurons or glial cells. We report here that when Hve-inx genes characteristic of discrete coupled networks were expressed ectopically in neurons known not to express them, the experimental cells were found to become dye coupled with the other cells in that network. Hve-inx6 is normally expressed by only three neurons in each ganglion, which form strongly dye-coupled electrical connections with each other [Shortening-Coupling interneuron (S-CI) network] (Muller and Scott, 1981; Dykes and Macagno, 2006). But when Hve-inx6 was ectopically expressed in a variety of central embryonic neurons, those cells became dye coupled with the S-CI network. Similarly, Hve-inx2 is normally uniquely expressed by the ganglion's large glial cells, but when it was ectopically expressed in different central neurons, they became dye coupled to the glial cells. In contrast, overexpression of the pan-neuronal Inx genes Hve-inx1 and Hve-inx14 did not yield any novel instances of dye coupling to pre-existent neuronal networks. These results reveal that expression of certain innexins is sufficient to couple individual neurons to pre-existing networks in the CNS. We propose that a primary determinant of selective neuronal connectivity and circuit formation in the leech is the surface expression of unique subsets of gap junctional proteins.


Assuntos
Conexinas/biossíntese , Conexinas/genética , Regulação da Expressão Gênica no Desenvolvimento , Rede Nervosa/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Coristoma/genética , Coristoma/metabolismo , Sanguessugas , Dados de Sequência Molecular , Rede Nervosa/química , Neuroglia/química , Neurônios/química
8.
Dev Genes Evol ; 222(1): 29-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22358128

RESUMO

Gap junctional proteins are important components of signaling pathways required for the development and ongoing functions of all animal tissues, particularly the nervous system, where they function in the intracellular and extracellular exchange of small signaling factors and ions. In animals whose genomes have been sufficiently sequenced, large families of these proteins, connexins, pannexins, and innexins, have been found, with 25 innexins in the nematode Caenorhabditis elegans Starich et al. (Cell Commun Adhes 8: 311-314, 2001) and at least 37 connexins in the zebrafish Danio rerio Cruciani and Mikalsen (Biol Chem 388:253-264, 2009). Having recently sequenced the medicinal leech Hirudo verbana genome, we now report the presence of 21 innexin genes in this species, nine more than we had previously reported from the analysis of an EST-derived transcriptomic database Dykes and Macagno (Dev Genes Evol 216: 185-97, 2006); Macagno et al. (BMC Genomics 25:407, 2010). Gene structure analyses show that, depending on the leech innexin gene, they can contain from 0 to 6 introns, with closely related paralogs showing the same number of introns. Phylogenetic trees comparing Hirudo to another distantly related leech species, Helobdella robusta, shows a high degree of orthology, whereas comparison to other annelids shows a relatively low level. Comparisons with other Lophotrochozoans, Ecdyzozoans and with vertebrate pannexins suggest a low number (one to two) of ancestral innexin/pannexins at the protostome/deuterostome split. Whole-mount in situ hybridization for individual genes in early embryos shows that ∼50% of the expressed innexins are detectable in multiple tissues. Expression analyses using quantitative PCR show that ∼70% of the Hirudo innexins are expressed in the nervous system, with most of these detected in early development. Finally, quantitative PCR analysis of several identified adult neurons detects the presence of different combinations of innexin genes, a property that may underlie the participation of these neurons in different adult coupling circuits.


Assuntos
Sanguessugas/genética , Sanguessugas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Éxons , Feminino , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sanguessugas/citologia , Sanguessugas/embriologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Filogenia
9.
J Proteome Res ; 10(10): 4734-43, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21800894

RESUMO

Mass Spectrometric Imaging (MSI) is a molecular imaging technique that allows the generation of 2D ion density maps for a large complement of the active molecules present in cells and sectioned tissues. Automatic segmentation of such maps according to patterns of co-expression of individual molecules can be used for discovery of novel molecular signatures (molecules that are specifically expressed in particular spatial regions). However, current segmentation techniques are biased toward the discovery of higher abundance molecules and large segments; they allow limited opportunity for user interaction, and validation is usually performed by similarity to known anatomical features. We describe here a novel method, AMASS (Algorithm for MSI Analysis by Semi-supervised Segmentation). AMASS relies on the discriminating power of a molecular signal instead of its intensity as a key feature, uses an internal consistency measure for validation, and allows significant user interaction and supervision as options. An automated segmentation of entire leech embryo data images resulted in segmentation domains congruent with many known organs, including heart, CNS ganglia, nephridia, nephridiopores, and lateral and ventral regions, each with a distinct molecular signature. Likewise, segmentation of a rat brain MSI slice data set yielded known brain features and provided interesting examples of co-expression between distinct brain regions. AMASS represents a new approach for the discovery of peptide masses with distinct spatial features of expression. Software source code and installation and usage guide are available at http://bix.ucsd.edu/AMASS/ .


Assuntos
Regulação da Expressão Gênica , Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Algoritmos , Animais , Encéfalo/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Processamento Eletrônico de Dados , Regulação da Expressão Gênica no Desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Sanguessugas , Peptídeos/química , Ratos
10.
J Proteome Res ; 10(4): 1915-28, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21332220

RESUMO

MSI is a molecular imaging technique that allows for the generation of topographic 2D maps for various endogenous and some exogenous molecules without prior specification of the molecule. In this paper, we start with the premise that a region of interest (ROI) is given to us based on preselected morphological criteria. Given an ROI, we develop a pipeline, first to determine mass values with distinct expression signatures, localized to the ROI, and second to identify the peptides corresponding to these mass values. To identify spatially differentiated masses, we implement a statistic that allows us to estimate, for each spectral peak, the probability that it is over- or under-expressed within the ROI versus outside. To identify peptides corresponding to these masses, we apply LC-MS/MS to fragment endogenous (nonprotease digested) peptides. A novel pipeline based on constructing sequence tags de novo from both original and decharged spectra and a subsequent database search is used to identify peptides. As the MSI signal and the identified peptide are only related by a single mass value, we isolate the corresponding transcript and perform a second validation via in situ hybridization of the transcript. We tested our approach, MSI-Query, on a number of ROIs in the medicinal leech, Hirudo medicinalis, including the central nervous system (CNS). The Hirudo CNS is capable of regenerating itself after injury, thus forming an important model system for neuropeptide identification. The pipeline helps identify a number of novel peptides. Specifically, we identify a gene that we name HmIF4, which is a member of the intermediate filament family involved in neural development and a second novel, uncharacterized peptide. A third peptide, derived from the histone H2B, is also identified, in agreement with the previously suggested role of histone H2B in axon targeting.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Cromatografia Líquida/métodos , Bases de Dados de Proteínas , Hirudo medicinalis/anatomia & histologia , Hirudo medicinalis/química , Dados de Sequência Molecular , Peso Molecular
11.
Dev Biol ; 344(1): 346-57, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20541541

RESUMO

LAR-like receptor protein tyrosine phosphatases (RPTPs), which are reported to be highly expressed in the nervous systems of most bilaterian animals, have been implicated in the regulation of critical developmental processes, such as neuronal pathfinding, cell adhesion and synaptogenesis. Here we report that two LAR-like RPTPs in the medicinal leech, HmLAR1 and HmLAR2, play roles in regulating the size and density of neuronal arbors within the developing nervous system and in the body wall. Employing single-cell RNAi knockdown and transgene expression techniques, we demonstrate that the expression level of HmLAR1 is directly correlated with the density of an identified neuron's arborization. Knocking down HmLAR1 mRNA levels in the mechanosensory pressure (P) neurons produces a reduced central arbor and a smaller arbor in the peripheral body wall, with fewer terminal branches. By contrast, overexpression of this receptor in a P cell leads to extensive neuronal sprouting, including many supernumerary neurites and terminal branches as well as, in some instances, the normal monopolar morphology of the P cell becoming multipolar. We also report that induced neuronal sprouting requires the expression of the receptor's membrane tethered ectodomain, including the NH(2)-Ig domains, but not of the intracellular phosphatase domains of the receptor. Interestingly, sprouting could be elicited upon ectopic expression of HmLAR1 and the related RPTP, HmLAR2 in the P and other neurons, including those that do not normally express either RPTP, suggesting that the substrates involved in HmLAR-induced sprouting are present in most neurons irrespective of whether they normally express these LAR-like RPTPs. Our data are consistent with the hypothesis that the receptors' ectodomains promote an adhesive interaction that enhances the maintenance of new processes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Sanguessugas/fisiologia , Neurônios/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Actinas/metabolismo , Animais , Adesão Celular , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Sanguessugas/embriologia , Modelos Biológicos , Sistema Nervoso/metabolismo , Neuritos/metabolismo , Pressão , Interferência de RNA , Transgenes
12.
Mol Cell Neurosci ; 45(4): 430-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20708686

RESUMO

LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level.


Assuntos
Proteínas de Anfíbios/metabolismo , Sistema Nervoso Central/metabolismo , Sanguessugas/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Anfíbios/genética , Animais , Sistema Nervoso Central/lesões , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hibridização in Situ Fluorescente , Compressão Nervosa , Proteínas Tirosina Fosfatases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
13.
BMC Genomics ; 11: 407, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20579359

RESUMO

BACKGROUND: The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. RESULTS: A total of approximately 133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions. CONCLUSIONS: The sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.


Assuntos
Sistema Nervoso Central/imunologia , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Hirudo medicinalis/genética , Hirudo medicinalis/imunologia , Imunidade Inata/genética , Homologia de Sequência do Ácido Nucleico , Imunidade Adaptativa/genética , Animais , Antígenos CD/genética , Peptídeos Catiônicos Antimicrobianos/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Citocinas/genética , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas/metabolismo , Hirudo medicinalis/embriologia , Humanos , RNA Mensageiro/genética , Receptores de Reconhecimento de Padrão/genética , Regeneração/genética , Especificidade da Espécie , Receptores Toll-Like/genética
14.
J Immunol ; 181(2): 1083-95, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606660

RESUMO

Following trauma, the CNS of the medicinal leech, unlike the mammalian CNS, has a strong capacity to regenerate neurites and synaptic connections that restore normal function. In this study, we show that this regenerative process is enhanced by a controlled bacterial infection, suggesting that induction of regeneration of normal CNS function may depend critically upon the coinitiation of an immune response. We explore the interaction between the activation of a neuroimmune response and the process of regeneration by assaying the potential roles of two newly characterized antimicrobial peptides. Our data provide evidence that microbial components differentially induce the transcription, by microglial cells, of both antimicrobial peptide genes, the products of which accumulate rapidly at sites in the CNS undergoing regeneration following axotomy. Using a preparation of leech CNS depleted of microglial cells, we also demonstrate the production of antimicrobial peptides by neurons. Interestingly, in addition to exerting antibacterial properties, both peptides act as promoters of the regenerative process of axotomized leech CNS. These data are the first to report the neuronal synthesis of antimicrobial peptides and their participation in the immune response and the regeneration of the CNS. Thus, the leech CNS appears as an excellent model for studying the implication of immune molecules in neural repair.


Assuntos
Aeromonas/imunologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Bactérias Gram-Positivas/imunologia , Hirudo medicinalis/fisiologia , Microglia/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Axotomia , Sequência de Bases , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Exocitose , Hirudo medicinalis/genética , Hirudo medicinalis/imunologia , Hirudo medicinalis/microbiologia , Microglia/citologia , Microglia/imunologia , Dados de Sequência Molecular , Regeneração Nervosa , Neurônios/citologia , Neurônios/imunologia , Alinhamento de Sequência
15.
Dev Biol ; 320(1): 215-25, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18582860

RESUMO

Receptor protein tyrosine phosphatases (RPTPs) have been shown to play key roles in regulating axon guidance and synaptogenesis. HmLAR2, one of two closely related LAR-like RPTPs in the embryonic leech, is expressed in a few central neurons and in a unique segmentally-iterated peripheral cell, the comb cell (CC). Here we show that tagged HmLAR2-EGFP has a punctate pattern of expression in the growth cones of the CC, particularly at the tips of extending filopodia. Moreover, although expression of the wild-type EGFP-tagged receptor does not affect CC growth cone morphology, expression of a putative dominant-negative mutant of the receptor, CS-HmLAR2, leads to the enlargement of the growth cones, a shortening of filopodia, and errors in cellular tiling. RNAi of several candidate substrate signaling proteins, Lena (leech Ena/Vasp), beta-integrin and paxillin, but not beta-catenin, phenocopies particular aspects of the effects of HmLAR2 RNAi. For paxillin, which co-localizes with HmLAR2 at growth cone puncta, knock-down led to a reduction in the number of such puncta. Together, our data suggests that HmLAR2 regulates the morphology of the growth cone by controlling F-actin polymerization and focal adhesion complexes.


Assuntos
Adesões Focais/enzimologia , Cones de Crescimento/enzimologia , Sanguessugas/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Pseudópodes/enzimologia , Animais , Células CHO , Catálise , Cricetinae , Cricetulus , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Sanguessugas/citologia , Sanguessugas/embriologia , Sanguessugas/genética , Mutação/genética , Paxilina/metabolismo , Fenótipo , Fosfotirosina/metabolismo , Ligação Proteica , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Transgenes
16.
Brain Behav ; 9(6): e01302, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31044549

RESUMO

INTRODUCTION: Wisdom is reportedly associated with better health and quality of life. However, our knowledge of the neurobiology of wisdom is still in the early stages of development. We aimed to improve our understanding by correlating a psychometric measure of the trait with patterns of brain activation produced by a cognitive task theorized to be relevant to wisdom: moral decision-making. In particular, we aimed to determine whether individual differences in wisdom interact with moral task complexity in relation to brain activation. METHODS: Participants were 39 community-dwelling men and women aged 27-76 years, who completed moral and nonmoral decision-making tasks while undergoing functional magnetic resonance imaging. Brain activation in select regions of interest was correlated with participants' scores on the San Diego Wisdom Scale (SD-WISE). RESULTS: Individual differences in wisdom were found to interact with brain response to moral versus nonmoral and moral personal versus impersonal dilemmas, particularly in regions in or near the default mode network. Persons with higher scores on the SD-WISE had less contrast between moral and nonmoral dilemmas and greater contrast between moral-personal and moral-impersonal dilemmas than individuals with lower SD-WISE scores. CONCLUSIONS: Results confirmed our hypothesis that individual differences in level of wisdom would interact with moral condition in relation to brain activation, and may underscore the relevance of considering one's own and others' actions and experiences in the context of wise thinking. Future studies are needed to replicate these findings and to examine specific neurocircuits.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Individualidade , Princípios Morais , Adulto , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Psicometria , Qualidade de Vida
17.
FEBS Lett ; 581(29): 5703-8, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18035059

RESUMO

Injury to the central nervous system triggers glial calcium waves in both vertebrates and invertebrates. In vertebrates the pannexin1 ATP-release channel appears to provide for calcium wave initiation and propagation. The innexins, which form invertebrate gap junctions and have sequence similarity with the pannexins, are candidates to form non-junctional membrane channels. Two leech innexins previously demonstrated in glia were expressed in frog oocytes. In addition to making gap junctions, innexins also formed non-junctional membrane channels with properties similar to those of pannexons. In addition, carbenoxolone reversibly blocked the loss of carboxyfluorescein dye into the bath from the giant glial cells in the connectives of the leech nerve cord, which are known to express the innexins we assayed.


Assuntos
Conexinas/fisiologia , Animais , Sinalização do Cálcio , Citoplasma/metabolismo , Junções Comunicantes/metabolismo , Sanguessugas/metabolismo , Modelos Biológicos , Neuroglia/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Xenopus/metabolismo
18.
J Comp Neurol ; 500(5): 850-62, 2007 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-17177256

RESUMO

In the leech embryo, the peripheral comb cell (CC) sends out many nonoverlapping, growth cone-tipped processes that grow in parallel and serve as a scaffold for the migrating myocytes of the later-developing oblique muscle layer. To explore how the parallel arrangement is generated we first examined the arrangement of CC cytoskeletal components by expressing a tubulin-binding protein and actin, both tagged with fluorescent reporters. This revealed that the growth cones were compartmentalized into F-actin-rich filopodia and a microtubule-rich central region. Time-lapse analysis with a 2-photon laser scanning microscope revealed that the growth cones of the CC are highly dynamic, undergoing rapid filopodial extension and retraction. Measurements of filopodial lifespan and length revealed that most filopodia at the leading edge of the growth cone achieved significantly longer lifespans and length than lateral filopodia. Furthermore, for the short-lived lateral filopodia, apparent interaction with a neighboring process was found to be a significant predictor of their nearly immediate (within 2-4 minutes) retraction. When contact was experimentally prevented by ablating individual CCs, the filopodia from the growth cones of adjacent segmental neighbors were found to be significantly lengthened in the direction of the removed homolog. Treatment with low doses of cytochalasin D to disrupt F-actin assembly led to filopodial retraction and growth cone collapse and resulted in the bifurcation of many CC processes, numerous crossover errors, and the loss of parallelism. These findings indicate the existence of a contact-mediated repulsive interaction between processes of the CC.


Assuntos
Cones de Crescimento/fisiologia , Sanguessugas/embriologia , Rede Nervosa/embriologia , Neuritos/fisiologia , Pseudópodes/fisiologia , Actinas/metabolismo , Animais , Citoesqueleto/metabolismo , Embrião não Mamífero , Sanguessugas/citologia , Sanguessugas/metabolismo , Morfogênese/fisiologia , Rede Nervosa/citologia , Rede Nervosa/metabolismo , Neurônios/citologia , Neurônios/fisiologia
19.
Dev Neurobiol ; 77(5): 517-521, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188695

RESUMO

Electrical synapses are finding increasing representation and importance in our understanding of signaling in the nervous system. In contrast to chemical synapses, at which molecules are evolutionary conserved, vertebrate and invertebrate electrical synapses represent molecularly different structures that share a common communicating strategy that allows them to serve very similar functions. A better understanding of differences and commonalities regarding the structure, function and regulation of vertebrate and invertebrate electrical synapses will lead to a better understanding of the properties and functional diversity of this modality of synaptic communication. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 517-521, 2017.


Assuntos
Sinapses Elétricas/fisiologia , Transmissão Sináptica/fisiologia , Animais
20.
Dev Neurobiol ; 77(5): 575-586, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27512961

RESUMO

The unique morphology and pattern of synaptic connections made by a neuron during development arise in part by an extended period of growth in which cell-cell interactions help to sculpt the arbor into its final shape, size, and participation in different synaptic networks. Recent experiments highlight a guiding role played by gap junction proteins in controlling this process. Ectopic and overexpression studies in invertebrates have revealed that the selective expression of distinct gap junction genes in neurons and glial cells is sufficient to establish selective new connections in the central nervous systems of the leech (Firme et al. [2012]: J Neurosci 32:14265-14270), the nematode (Rabinowitch et al. [2014]: Nat Commun 5:4442), and the fruit fly (Pézier et al., 2016: PLoS One 11:e0152211). We present here an overview of this work and suggest that gap junction proteins, in addition to their synaptic/communicative functions, have an instructive role as recognition and adhesion factors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 575-586, 2017.


Assuntos
Conexinas/fisiologia , Neurônios/fisiologia , Animais , Conexinas/genética , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA