Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Biol Reprod ; 110(1): 211-218, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37724921

RESUMO

Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 µm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.


Assuntos
Microplásticos , Plásticos , Gravidez , Feminino , Humanos , Animais , Camundongos , Poliestirenos/toxicidade , Placenta/irrigação sanguínea , Desenvolvimento Fetal
2.
Psychol Med ; 54(6): 1196-1206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37905407

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is excessively prevalent and premature in bipolar disorder (BD), even after controlling for traditional cardiovascular risk factors. The increased risk of CVD in BD may be subserved by microvascular dysfunction. We examined coronary microvascular function in relation to youth BD. METHODS: Participants were 86 youth, ages 13-20 years (n = 39 BD, n = 47 controls). Coronary microvascular reactivity (CMVR) was assessed using quantitative T2 magnetic resonance imaging during a validated breathing-paradigm. Quantitative T2 maps were acquired at baseline, following 60-s of hyperventilation, and every 10-s thereafter during a 40-s breath-hold. Left ventricular structure and function were evaluated based on 12-15 short- and long-axis cardiac-gated cine images. A linear mixed-effects model that controlled for age, sex, and body mass index assessed for between-group differences in CMVR (time-by-group interaction). RESULTS: The breathing-paradigm induced a significant time-related increase in T2 relaxation time for all participants (i.e. CMVR; ß = 0.36, p < 0.001). CMVR was significantly lower in BD v. controls (ß = -0.11, p = 0.002). Post-hoc analyses found lower T2 relaxation time in BD youth after 20-, 30-, and 40 s of breath-holding (d = 0.48, d = 0.72, d = 0.91, respectively; all pFDR < 0.01). Gross left ventricular structure and function (e.g. mass, ejection fraction) were within normal ranges and did not differ between groups. CONCLUSION: Youth with BD showed evidence of subclinically impaired coronary microvascular function, despite normal gross cardiac structure and function. These results converge with prior findings in adults with major depressive disorder and post-traumatic stress disorder. Future studies integrating larger samples, prospective follow-up, and blood-based biomarkers are warranted.


Assuntos
Transtorno Bipolar , Doenças Cardiovasculares , Transtorno Depressivo Maior , Adulto , Humanos , Adolescente , Transtorno Bipolar/diagnóstico por imagem , Estudos Prospectivos , Imageamento por Ressonância Magnética
3.
J Magn Reson Imaging ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940396

RESUMO

BACKGROUND: Cardiac MRI feature tracking (FT) allows objective assessment of segmental left ventricular (LV) function following a myocardial infarction (MI), but its utilization in sheep, where interventions can be tested, is lacking. PURPOSE: To apply and validate FT in a sheep model of MI and describe post-MI LV remodeling. STUDY TYPE: Animal model, longitudinal. ANIMAL MODEL: Eighteen lambs (6 months, male, n = 14; female, n = 4; 25.2 ± 4.5 kg). FIELD STRENGTH/SEQUENCE: Two-dimensional balanced steady-state free precession (bSSFP) and 3D inversion recovery fast low angle shot (IR-FLASH) sequences at 3 T. ASSESSMENT: Seven lambs underwent test-retest imaging to assess FT interstudy reproducibility. MI was induced in the remaining 11 by coronary ligation with MRI being undertaken before and 15 days post-MI. Injury size was measured by late gadolinium enhancement (LGE) and LV volumes, LV mass, ejection fraction (LVEF), and wall thickness (LVWT) were measured, with FT measures of global and segmental radial, circumferential, and longitudinal strain. STATISTICAL TESTS: Sampling variability, inter-study, intra and interobserver reproducibility were assessed using Pearson's correlation, Bland-Altman analyses, and intra-class correlation coefficients (ICC). Diagnostic performance of segmental strain to predict LGE was assessed using receiver operating characteristic curve analysis. Significant differences were considered P < 0.05. RESULTS: Inter-study reproducibility of FT was overall good to excellent, with global strain being more reproducible than segmental strain (ICC = 0.89-0.98 vs. 0.77-0.96). MI (4.0 ± 3.7% LV mass) led to LV remodeling, as evident by significantly increased LV volumes and LV mass, and significantly decreased LVWT in injured regions, while LVEF was preserved (54.9 ± 6.9% vs. 55.6 ± 5.7%; P = 0.778). Segmental circumferential strain (CS) correlated most strongly with LGE. Basal and mid- CS increased significantly, while apical CS significantly decreased post-MI. DATA CONCLUSION: FT is reproducible and compensation by hyperkinetic remote myocardium may manifest as overall preserved global LV function. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 2.

4.
Exp Physiol ; 109(6): 980-991, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606906

RESUMO

Increasing placental perfusion (PP) could improve outcomes of growth-restricted fetuses. One way of increasing PP may be by using phosphodiesterase (PDE)-5 inhibitors, which induce vasodilatation of vascular beds. We used a combination of clinically relevant magnetic resonance imaging (MRI) techniques to characterize the impact that tadalafil infusion has on maternal, placental and fetal circulations. At 116-117 days' gestational age (dGA; term, 150 days), pregnant ewes (n = 6) underwent fetal catheterization surgery. At 120-123 dGA ewes were anaesthetized and MRI scans were performed during three acquisition windows: a basal state and then ∼15-75 min (TAD 1) and ∼75-135 min (TAD 2) post maternal administration (24 mg; intravenous bolus) of tadalafil. Phase contrast MRI and T2 oximetry were used to measure blood flow and oxygen delivery. Placental diffusion and PP were assessed using the Diffusion-Relaxation Combined Imaging for Detailed Placental Evaluation-'DECIDE' technique. Uterine artery (UtA) blood flow when normalized to maternal left ventricular cardiac output (LVCO) was reduced in both TAD periods. DECIDE imaging found no impact of tadalafil on placental diffusivity or fetoplacental blood volume fraction. Maternal-placental blood volume fraction was increased in the TAD 2 period. Fetal D O 2 ${D_{{{\mathrm{O}}_2}}}$ and V ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ were not affected by maternal tadalafil administration. Maternal tadalafil administration did not increase UtA blood flow and thus may not be an effective vasodilator at the level of the UtAs. The increased maternal-placental blood volume fraction may indicate local vasodilatation of the maternal intervillous space, which may have compensated for the reduced proportion of UtA D O 2 ${D_{{{\mathrm{O}}_2}}}$ .


Assuntos
Oxigênio , Placenta , Circulação Placentária , Tadalafila , Artéria Uterina , Animais , Feminino , Tadalafila/farmacologia , Tadalafila/administração & dosagem , Gravidez , Ovinos , Artéria Uterina/efeitos dos fármacos , Placenta/efeitos dos fármacos , Placenta/irrigação sanguínea , Circulação Placentária/efeitos dos fármacos , Oxigênio/sangue , Fluxo Sanguíneo Regional/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/administração & dosagem , Imageamento por Ressonância Magnética , Feto/irrigação sanguínea , Feto/efeitos dos fármacos
5.
J Cardiovasc Magn Reson ; 26(1): 101003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38290615

RESUMO

BACKGROUND: Non-Cartesian magnetic resonance imaging trajectories at golden angle increments have the advantage of allowing motion correction and gating using intermediate real-time reconstructions. However, when the acquired data are cardiac binned for cine imaging, trajectories can cluster together at certain heart rates (HR) causing image artifacts. Here, we demonstrate an approach to reduce clustering by inserting additional angular increments within the trajectory, and optimizing them while still allowing for intermediate reconstructions. METHODS: Three acquisition models were simulated under constant and variable HR: golden angle (Mtrd), random additional angles (Mrnd), and optimized additional angles (Mopt). The standard deviations of trajectory angular differences (STAD) were compared through their interquartile ranges (IQR) and the Kolmogorov-Smirnov test (significance level: p = 0.05). Agreement between an image reconstructed with uniform sampling and images from Mtrd, Mrnd, and Mopt was analyzed using the structural similarity index measure (SSIM). Mtrd and Mopt were compared in three adults at high, low, and no HR variability. RESULTS: STADs from Mtrd were significantly different (p < 0.05) from Mopt and Mrnd. STAD (IQR × 10-2 rad) showed that Mopt (0.5) and Mrnd (0.5) reduced clustering relative to Mtrd (1.9) at constant HR. For variable HR, Mopt (0.5) and Mrnd (0.5) outperformed Mtrd (0.9). The SSIM (IQR) showed that Mopt (0.011) produced the best image quality, followed by Mrnd (0.014), and Mtrd (0.030). Mopt outperformed Mtrd at reduced HR variability in in-vivo studies. At high HR variability, both models performed well. CONCLUSION: This approach reduces clustering in k-space and improves image quality.


Assuntos
Artefatos , Frequência Cardíaca , Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética , Valor Preditivo dos Testes , Humanos , Reprodutibilidade dos Testes , Adulto , Masculino , Feminino , Técnicas de Imagem de Sincronização Cardíaca
6.
J Physiol ; 601(23): 5413-5436, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906114

RESUMO

Late gestational supine positioning reduces maternal cardiac output due to inferior vena caval (IVC) compression, despite increased collateral venous return. However, little is known about the impact of maternal position on oxygen (O2 ) delivery and consumption of the gravid uterus, fetus, placenta and lower limbs. We studied the effects of maternal positioning on these parameters in 20 healthy pregnant subjects at 36 ± 2 weeks using magnetic resonance imaging (MRI); a follow-up MRI was performed 6-months postpartum (n = 16/20). MRI techniques included phase-contrast and T1/T2 relaxometry for blood flow and oximetry imaging, respectively. O2 transport was measured in the following vessels (bilateral where appropriate): maternal abdominal descending aorta (DAoabdo ), IVC, ovarian, paraspinal veins (PSV), uterine artery (UtA) and external iliacs, and umbilical. Maternal cardiac output was measured by summing DAothoracic and superior vena cava flows. Supine mothers (n = 6) had lower cardiac output and O2 delivery in the DAoabdo , UtA and external iliac arteries, and higher PSV flow than those in either the left (n = 8) or right (n = 6) lateral positions during MRI. However, O2 consumption in the gravid uterus, fetus, placenta and lower limbs was unaffected by maternal positioning. The ratio of IVC/PSV flow decreased in supine mothers while ovarian venous flow and O2 saturation were unaltered, suggesting a major route of pelvic venous return unaffected by maternal position. Placental-fetal O2 transport and consumption were similar between left and right lateral maternal positions. In comparison to non-pregnant findings, DAoabdo and UtA O2 delivery and pelvic O2 consumption increased, while lower-limb consumption remained constant , despite reduced external iliac artery O2 delivery in late gestation. KEY POINTS: Though sleeping supine during the third trimester is associated with an increased risk of antepartum stillbirth, the underlying biological mechanisms are not fully understood. Maternal cardiac output and uteroplacental flow are reduced in supine mothers due to inferior vena caval compression from the weight of the gravid uterus. This MRI study provides a comprehensive circulatory assessment, demonstrating reduced maternal cardiac output and O2 delivery (uteroplacental, lower body) in supine compared to lateral positioning; however, O2 consumption (gravid uterus, fetus, placenta, lower limbs) was preserved. Unlike other mammalian species, the ovarian veins conduct substantial venous return from the human pregnant uterus that is unaffected by maternal positioning. Lumbar paraspinal venous flow increased in supine mothers. These observations may have important considerations during major pelvic surgery in pregnancy (i.e. placenta percreta). Future studies should address the importance of maternal positioning as a potential tool to deliver improved perinatal outcomes in pregnancies with compromised uteroplacental O2 delivery.


Assuntos
Placenta , Veia Cava Superior , Feminino , Humanos , Gravidez , Estudos de Viabilidade , Feto/diagnóstico por imagem , Feto/irrigação sanguínea , Imageamento por Ressonância Magnética , Oxigênio , Consumo de Oxigênio , Placenta/diagnóstico por imagem
7.
J Physiol ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996982

RESUMO

Babies born with fetal growth restriction (FGR) are at higher risk of developing cardiometabolic diseases across the life course. The reduction in substrate supply to the developing fetus that causes FGR not only alters cardiac growth and structure but may have deleterious effects on metabolism and function. Using a sheep model of placental restriction to induce FGR, we investigated key cardiac metabolic and functional markers that may be altered in FGR. We also employed phase-contrast magnetic resonance imaging MRI to assess left ventricular cardiac output (LVCO) as a measure of cardiac function. We hypothesized that signalling molecules involved in cardiac fatty acid utilisation and contractility would be impaired by FGR and that this would have a negative impact on LVCO in the late gestation fetus. Key glucose (GLUT4 protein) and fatty acid (FATP, CD36 gene expression) substrate transporters were significantly reduced in the hearts of FGR fetuses. We also found reduced mitochondrial numbers as well as abundance of electron transport chain complexes (complexes II and IV). These data suggest that FGR diminishes metabolic and mitochondrial capacity in the fetal heart; however, alterations were not correlated with fetal LVCO. Overall, these data show that FGR alters fetal cardiac metabolism in late gestation. If sustained ex utero, this altered metabolic profile may contribute to poor cardiac outcomes in FGR-born individuals after birth. KEY POINTS: Around the time of birth, substrate utilisation in the fetal heart switches from carbohydrates to fatty acids. However, the effect of fetal growth restriction (FGR) on this switch, and thus the ability of the fetal heart to effectively metabolise fatty acids, is not fully understood. Using a sheep model of early onset FGR, we observed significant downregulation in mRNA expression of fatty acid receptors CD36 and FABP in the fetal heart. FGR fetuses also had significantly lower cardiac mitochondrial abundance than controls. There was a reduction in abundance of complexes II and IV within the electron transport chain of the FGR fetal heart, suggesting altered ATP production. This indicates reduced fatty acid metabolism and mitochondrial function in the heart of the FGR fetus, which may have detrimental long-term implications and contribute to increased risk of cardiovascular disease later in life.

8.
Metabolomics ; 19(12): 96, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989919

RESUMO

INTRODUCTION: Plastics used in everyday materials accumulate as waste in the environment and degrade over time. The impacts of the resulting particulate micro- and nanoplastics on human health remain largely unknown. In pregnant mice, we recently demonstrated that exposure to nanoplastics throughout gestation and during lactation resulted in changes in brain structure detected on MRI. One possible explanation for this abnormal postnatal brain development is altered fetal brain metabolism. OBJECTIVES: To determine the effect of maternal exposure to nanoplastics on fetal brain metabolism. METHODS: Healthy pregnant CD-1 mice were exposed to 50 nm polystyrene nanoplastics at a concentration of 106 ng/L through drinking water during gestation. Fetal brain samples were collected at embryonic day 17.5 (n = 18-21 per group per sex) and snap-frozen in liquid nitrogen. Magic angle spinning nuclear magnetic resonance was used to determine metabolite profiles and their relative concentrations in the fetal brain. RESULTS: The relative concentrations of gamma-aminobutyric acid (GABA), creatine and glucose were found to decrease by 40%, 21% and 30% respectively following maternal nanoplastic exposure when compared to the controls (p < 0.05). The change in relative concentration of asparagine with nanoplastic exposure was dependent on fetal sex (p < 0.005). CONCLUSION: Maternal exposure to polystyrene nanoplastics caused abnormal fetal brain metabolism in mice. The present study demonstrates the potential impacts of nanoplastic exposure during fetal development and motivates further studies to evaluate the risk to human pregnancies.


Assuntos
Microplásticos , Poliestirenos , Gravidez , Humanos , Feminino , Animais , Camundongos , Exposição Materna/efeitos adversos , Metabolômica , Encéfalo
9.
Metabolomics ; 19(1): 1, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538272

RESUMO

INTRODUCTION: The rapid growth in the worldwide use of plastics has resulted in a vast accumulation of microplastics in the air, soil and water. The impact of these microplastics on pregnancy and fetal development remains largely unknown. In pregnant mice, we recently demonstrated that exposure to micro- and nanoplastics throughout gestation resulted in significant fetal growth restriction. One possible explanation for reduced fetal growth is abnormal placental metabolism. OBJECTIVES: To evaluate the effect of maternal exposure to microplastics on placental metabolism. METHODS: In the present study, CD-1 pregnant mice were exposed to 5 µm polystyrene microplastics in filtered drinking water at one of four concentrations (0 ng/L (controls), 102 ng/L, 104 ng/L, 106 ng/L) throughout gestation (n = 7-11/group). At embryonic day 17.5, placental tissue samples were collected (n = 28-44/group). Metabolite profiles were determined using 1 H high-resolution magic angle spinning magnetic resonance spectroscopy. RESULTS: The relative concentration of lysine (p = 0.003) and glucose (p < 0.0001) in the placenta were found to decrease with increasing microplastic concentrations, with a significant reduction at the highest exposure concentration. Multivariate analysis identified shifts in the metabolic profile with MP exposure and pathway analysis identified perturbations in the biotin metabolism, lysine degradation, and glycolysis/gluconeogenesis pathways. CONCLUSION: Maternal exposure to microplastics resulted in significant alterations in placental metabolism. This study highlights the potential impact of microplastic exposure on pregnancy outcomes and that efforts should be made to minimize exposure to plastics, particularly during pregnancy.


Assuntos
Microplásticos , Placenta , Humanos , Gravidez , Feminino , Animais , Camundongos , Placenta/metabolismo , Microplásticos/metabolismo , Poliestirenos/metabolismo , Plásticos/metabolismo , Exposição Materna/efeitos adversos , Lisina/metabolismo , Metabolômica
10.
J Magn Reson Imaging ; 55(6): 1696-1707, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35312203

RESUMO

BACKGROUND: Evaluation of structural lung abnormalities with magnetic resonance imaging (MRI) has previously been shown to be predictive of clinical neonatal outcomes in preterm birth. MRI during free-breathing with phase-resolved functional lung (PREFUL) may allow for complimentary functional information without exogenous contrast. PURPOSE: To investigate the feasibility of structural and functional pulmonary MRI in a cohort of neonates and infants with no cardiorespiratory disease. Macrovascular pulmonary blood flows were also evaluated. STUDY TYPE: Prospective. POPULATION: Ten term infants with no clinically defined cardiorespiratory disease were imaged. Infants recruited from the general population and neonatal intensive care unit (NICU) were studied. FIELD STRENGTH/SEQUENCE: T1 -weighted VIBE, T2 -weighted BLADE uncorrected for motion. Ultrashort echo time (UTE) and 3D-flow data were acquired during free-breathing with self-navigation and retrospective reconstruction. Single slice 2D-gradient echo (GRE) images were acquired during free-breathing for PREFUL analysis. Imaging was performed at 3 T. ASSESSMENT: T1 , T2 , and UTE images were scored according to the modified Ochiai scheme by three pediatric body radiologists. Ventilation/perfusion-weighted maps were extracted from free-breathing GRE images using PREFUL analysis. Ventilation and perfusion defect percent (VDP, QDP) were calculated from the segmented ventilation and perfusion-weighted maps. Time-averaged cardiac blood velocities from three-dimensional-flow were evaluated in major pulmonary arteries and veins. STATISTICAL TEST: Intraclass correlation coefficient (ICC). RESULTS: The ICC of replicate structural scores was 0.81 (95% CI: 0.45-0.95) across three observers. Elevated Ochiai scores, VDP, and QDP were observed in two NICU participants. Excluding these participants, mean ± standard deviation structural scores were 1.2 ± 0.8, while VDP and QDP were 1.0% ± 1.1% and 0.4% ± 0.5%, respectively. Main pulmonary arterial blood flows normalized to body surface area were 3.15 ± 0.78 L/min/m2 . DATA CONCLUSION: Structural and functional pulmonary imaging is feasible using standard clinical MRI hardware (commercial whole-body 3 T scanner, table spine array, and flexible thoracic array) in free-breathing infants. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Nascimento Prematuro , Criança , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional , Recém-Nascido , Pulmão , Imageamento por Ressonância Magnética , Gravidez , Estudos Prospectivos , Estudos Retrospectivos
11.
J Ultrasound Med ; 41(4): 899-905, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34228375

RESUMO

OBJECTIVES: To determine the relationship between blood flow in the fetal descending aorta and discordant umbilical arteries (UAs). METHODS: Pulsed wave Doppler of both UAs and the descending aorta was performed at 4-weekly intervals between 14 and 40 weeks of gestation in 209 pregnant women. In datasets with discordant UAs, a linear mixed effects model was used to determine the categorical relationship between the UA pulsatility index (PI) (high, low and average) and the descending aorta PI. RESULTS: Of the 209 cases, 81 had a discordance of greater than 25% in UA PI during one of their visits. There were no differences in birth outcomes between the groups with concordant and discordant UA PIs. In the cases with discordant UA PIs, the descending aorta PI was most strongly associated with both the average UA PI (P = .008), and with the UA with the lower PI (P = .008). CONCLUSIONS: The relationship between blood flow in the descending aorta and UAs is consistent with the law for combining resistances in parallel. Measurements of the descending aorta PI, particularly in a scenario with discordant UAs, may inform the stability of the feto-placental circulation where discordant UA PIs are found.


Assuntos
Circulação Placentária , Artérias Umbilicais , Aorta Torácica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Feminino , Idade Gestacional , Humanos , Placenta/diagnóstico por imagem , Gravidez , Fluxo Pulsátil , Ultrassonografia Doppler , Ultrassonografia Doppler de Pulso , Ultrassonografia Pré-Natal , Artérias Umbilicais/diagnóstico por imagem
12.
Cardiol Young ; 32(11): 1768-1779, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34986918

RESUMO

OBJECTIVES: To evaluate the impact of fetal haemodynamics on surgical and neurodevelopmental outcomes in severe Ebstein anomaly and tricuspid valve dysplasia. METHODS: Thirty-four fetuses with Ebstein anomaly/tricuspid valve dysplasia were referred from 2013 to 2019 for fetal echocardiography and clinical management. Nineteen fetuses with Ebstein anomaly/tricuspid valve dysplasia and 30 controls underwent cardiovascular magnetic resonance to quantify the fetal blood flow and to calculate cerebral oxygen delivery (cDO2) and consumption (cVO2). The 3D steady-state free precession acquisition was used to measure fetal brain volume. Surgical outcome, brain MRI, and neurodevelopmental follow-up were reviewed. RESULTS: Twenty-six fetuses were live born (76%) and survival (65%) at a mean follow-up of 4 years. Nine fetuses had a brain MRI before discharge, and all had clinically silent injuries and volume loss. At 18 months, five single-ventricle patients had a neurodevelopmental delay in cognition and language (mean percentile: 11th), with gross-motor skills more affected than fine-motor skills (mean percentiles: 4th and 34th). Fetuses with Ebstein anomaly/tricuspid valve dysplasia had smaller brains, lower combined ventricular output, ascending aorta, superior caval vien and umbilical vein flows, lower oxygen saturation in ascending aorta and superior caval vien, lower cDO2 and cVO2 (p < 0.05). Superior caval vien/combined ventricular output and descending aorta/combined ventricular output ratios were lower in fetuses with circular shunt (p < 0.05). Fetuses requiring the Starnes procedure tended to have smaller brains, lower combined ventricular output, superior caval vien, descending aorta, and umbilical vein flows. CONCLUSIONS: All patients with Ebstein anomaly/tricuspid valve dysplasia are at high risk of neurodevelopmental delay and warrant follow-up. Fetal cardiovascular magnetic resonance revealed impaired brain growth with diminished cerebral blood flow and cDO2, the extenting dependent on the severity of the haemodynamic compromise.


Assuntos
Anomalia de Ebstein , Cardiopatias Congênitas , Feminino , Humanos , Anomalia de Ebstein/complicações , Anomalia de Ebstein/diagnóstico por imagem , Anomalia de Ebstein/cirurgia , Valva Tricúspide/diagnóstico por imagem , Valva Tricúspide/cirurgia , Valva Tricúspide/anormalidades , Veia Cava Superior , Estudos Retrospectivos , Hemodinâmica , Feto
13.
J Physiol ; 599(20): 4705-4724, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487347

RESUMO

Restriction of fetal substrate supply has an adverse effect on surfactant maturation in the lung and thus affects the transition from in utero placental oxygenation to pulmonary ventilation ex utero. The effects on surfactant maturation are mediated by alteration in mechanisms regulating surfactant protein and phospholipid synthesis. This study aimed to determine the effects of late gestation maternal undernutrition (LGUN) and LGUN plus fetal glucose infusion (LGUN+G) compared to Control on surfactant maturation and lung development, and the relationship with pulmonary blood flow and oxygen delivery ( DO2 ) measured by magnetic resonance imaging (MRI) with molecules that regulate lung development. LGUN from 115 to 140 days' gestation significantly decreased fetal body weight, which was normalized by glucose infusion. LGUN and LGUN+G resulted in decreased fetal plasma glucose concentration, with no change in fetal arterial PO2 compared to control. There was no effect of LGUN and LGUN+G on the mRNA expression of surfactant proteins (SFTP) and genes regulating surfactant maturation in the fetal lung. However, blood flow in the main pulmonary artery was significantly increased in LGUN, despite no change in blood flow in the left or right pulmonary artery and DO2 to the fetal lung. There was a negative relationship between left pulmonary artery flow and DO2 to the left lung with SFTP-B and GLUT1 mRNA expression, while their relationship with VEGFR2 was positive. These results suggest that increased pulmonary blood flow measured by MRI may have an adverse effect on surfactant maturation during fetal lung development. KEY POINTS: Maternal undernutrition during gestation alters fetal lung development by impacting surfactant maturation. However, the direction of change remains controversial. We examined the effects of maternal late gestation maternal undernutrition (LGUN) on maternal and fetal outcomes, signalling pathways involved in fetal lung development, pulmonary haemodynamics and oxygen delivery in sheep using a combination of molecular and magnetic resonance imaging (MRI) techniques. LGUN decreased fetal plasma glucose concentration without affecting arterial PO2 . Surfactant maturation was not affected; however, main pulmonary artery blood flow was significantly increased in the LGUN fetuses. This is the first study to explore the relationship between in utero MRI measures of pulmonary haemodynamics and lung development. Across all treatment groups, left pulmonary artery blood flow and oxygen delivery were negatively correlated with surfactant protein B mRNA and protein expression in late gestation.


Assuntos
Desnutrição , Circulação Pulmonar , Animais , Feminino , Feto , Imageamento por Ressonância Magnética , Troca Materno-Fetal , Oxigênio , Placenta , Gravidez , Ovinos , Tensoativos
14.
J Physiol ; 599(10): 2573-2602, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675040

RESUMO

KEY POINTS: Human placental function is evaluated using non-invasive Doppler ultrasound of umbilical and uterine artery pulsatility indices as measures of resistance in placental vascular beds, while measurement of placental oxygen consumption ( VO2 ) is only possible during Caesarean delivery. This study shows the feasibility of using magnetic resonance imaging (MRI) in utero to measure blood flow and oxygen content in uterine and umbilical vessels to calculate oxygen delivery to and VO2 by the gravid uterus, uteroplacenta and fetus. Normal late gestational human uteroplacental VO2 by MRI was ∼4 ml min-1  kg-1 fetal weight, which was similar to our MRI measurements in sheep and to those previously measured using invasive techniques. Our MRI approach can quantify uteroplacental VO2 , which involves the quantification of maternal- and fetal-placental blood flows, fetal oxygen delivery and VO2 , and the oxygen gradient between uterine- and umbilical-venous blood, providing a comprehensive assessment of placental function with clinical potential. ABSTRACT: It has not been feasible to perform routine clinical measurement of human placental oxygen consumption ( VO2 ) and in vitro studies do not reflect true metabolism in utero. Here we propose an MRI method to non-invasively quantify in utero placental and fetal oxygen delivery ( DO2 ) and VO2 in healthy humans and sheep. Women (n = 20) and Merino sheep (n = 10; 23 sets of measurements) with singleton pregnancies underwent an MRI in late gestation (36 ± 2 weeks and 128 ± 9 days, respectively; mean ± SD). Blood flow (phase-contrast) and oxygen content (T1 and T2 relaxometry) were measured in the major uterine- and umbilical-placental vessels, allowing calculation of uteroplacental and fetal DO2 and VO2 . Maternal DO2 (ml min-1  kg-1 fetus) to the gravid uterus was similar in humans and sheep (human = 54 ± 15, sheep = 53 ± 21, P = 0.854), while fetal DO2 (human = 25 ± 4, sheep = 22 ± 5, P = 0.049) was slightly lower in sheep. Uteroplacental and fetal VO2 (ml min-1  kg-1 fetus; uteroplacental: human = 4.1 ± 1.5, sheep = 3.5 ± 1.9, P = 0.281; fetus: human = 6.8 ± 1.3, sheep = 7.2 ± 1.7, P = 0.426) were similar between species. Late gestational uteroplacental:fetal VO2 ratio did not change with age (human, P = 0.256; sheep, P = 0.121). Human umbilical blood flow (ml min-1  kg-1 fetus) decreased with advancing age (P = 0.008), while fetal VO2 was preserved through an increase in oxygen extraction (P = 0.046). By contrast, sheep fetal VO2 was preserved through stable umbilical flow (ml min-1  kg-1 ; P = 0.443) and oxygen extraction (P = 0.582). MRI derived measurements of uteroplacental and fetal VO2 between humans and sheep were similar and in keeping with prior data obtained using invasive techniques. Taken together, these data confirm the reliability of our approach, which offers a novel clinical 'placental function test'.


Assuntos
Placenta , Circulação Placentária , Animais , Feminino , Feto/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Placenta/diagnóstico por imagem , Gravidez , Reprodutibilidade dos Testes , Ovinos , Útero/diagnóstico por imagem
15.
J Magn Reson Imaging ; 53(3): 827-837, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33135834

RESUMO

BACKGROUND: Persons with hemophilia experience hemarthrosis, which can lead to cartilage degeneration, causing physical impairment. MRI T2 mapping has the potential to be used as a tool to evaluate early arthropathic changes and cartilage degeneration in patients with hemophilia. PURPOSE: To assess the value of MRI-T2 mapping as a tool for investigating the cartilage status of children and adolescents with hemophilic arthropathy. STUDY TYPE: Prospective, cross-sectional. SUBJECTS: Twenty-eight boys with hemophilia (aged 5-17 years) and 23 healthy boys (aged 7-17 years). FIELD STRENGTH/SEQUENCES: A multiecho spin-echo T2 -weighted gradient echo sequence was used on a 3.0T magnet. ASSESSMENT: MRI-T2 maps of ankle (tibia-talus) (n = 19) or knee (femur-tibia) (n = 9) cartilage were assessed in hemophilia and healthy groups. An anatomically-based MRI score was also assigned to each ankle/knee. STATISTICAL TESTS: Pearson's correlation coefficient (r), linear regression, intraclass correlation coefficient (ICC), and analysis of variance (ANOVA) test. RESULTS: Negative associations between age and ankle/knee cartilage T2 relaxation times were found in hemophilia (r = -0.72 [P = 0.03] to -0.55 [P = 0.01]) and healthy (r = -0.84 [P < 0.001] to -0.55 [P = 0.20]) groups. There were nonsignificant associations between ankle cartilage T2 relaxation times and MRI scores (r = -0.15 [P = 0.54] to 0.31 [P = 0.19]). DATA CONCLUSION: Results of this clinical investigation emphasize the potential importance of MRI-T2 maps as a tool to understand the functional status of cartilage in children and adolescents with hemophilic arthropathy, while holding promise for the detection of early cartilage degeneration prior to macroscopic characterization by conventional MRI. MRI-T2 mapping may provide novel information that is not reflected in the anatomically-based MRI scoring system. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Cartilagem Articular , Adolescente , Cartilagem Articular/diagnóstico por imagem , Criança , Pré-Escolar , Estudos Transversais , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos
16.
J Magn Reson Imaging ; 53(2): 540-551, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32815242

RESUMO

BACKGROUND: Phase contrast MRI in the great vessels is a potential clinical tool for managing fetal pathologies. One challenge is the uncontrollable fetal motion, potentially corrupting flow quantifications. PURPOSE: To demonstrate improvements in fetal blood flow quantification in great vessels using retrospectively motion-corrected golden-angle radial phase contrast MRI relative to Cartesian phase contrast MRI. STUDY TYPE: Method comparison. PHANTOM/SUBJECTS: Computer simulation. Seventeen pregnant volunteers. FIELD STRENGTH/SEQUENCE: 1.5T and 3T. Cartesian and golden-angle radial phase contrast MRI. ASSESSMENT: Through computer simulations, radial (with and without retrospective motion correction) and Cartesian phase contrast MRI were compared using flow deviations. in vivo Cartesian and radial phase contrast MRI measurements and reconstruction qualities were compared in pregnancies. Cartesian data were reconstructed into gated reconstructions (CINEs) after cardiac gating with metric optimized gating (MOG). For radial data, real-time reconstructions were performed for motion correction and MOG followed by CINE reconstructions. STATISTICAL TESTS: Wilcoxon signed-rank test. Linear regression. Bland-Altman plots. Student's t-test. RESULTS: Simulations showed significant improvements (P < 0.05) in flow accuracy and reconstruction quality with motion correction ([mean/peak] flow errors with ±5 mm motion corruption: Cartesian [35 ± 1/115 ± 7] mL/s, motion uncorrected radial [25 ± 1/75 ± 2] mL/s and motion-corrected radial [1.0 ± 0.5/-5 ± 1] mL/s). in vivo Cartesian reconstructions without motion correction had lower quality than the motion-corrected radial reconstructions (P < 0.05). Across all fetal mean flow measurements, the bias [limits of agreement] between the two measurements were -0.2 [-76, 75] mL/min/kg, while the linear regression coefficients were (Mradial = 0.81 × MCartesian + 29.8 [mL/min/kg], r2 = 0.67). The corresponding measures for the peak fetal flows were -23 [-214, 167] mL/min/kg and (Pradial = 0.95 × PCartesian -1.2 [mL/min/kg], r2 = 0.80). Cartesian reconstructions of low quality showed significantly higher estimated mean and peak (P < 0.05) flows than the corresponding radial reconstructions. DATA CONCLUSION: Simulations showed that radial phase contrast MRI with motion compensation improved flow accuracy. For fetal measurements, motion-corrected radial reconstructions showed better image quality than, and different flow values from, Cartesian reconstructions. Level of Evidence 1. Technical Efficacy Stage 1. J. MAGN. RESON. IMAGING 2021;53:540-551.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Simulação por Computador , Feminino , Humanos , Movimento (Física) , Gravidez , Reprodutibilidade dos Testes , Estudos Retrospectivos
17.
Exp Physiol ; 106(5): 1166-1180, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600040

RESUMO

NEW FINDINGS: What is the central question of this study? Uterine artery blood flow helps to maintain fetal oxygen and nutrient delivery. We investigated the effects of increased uterine artery blood flow mediated by resveratrol on fetal growth, haemodynamics, blood pressure regulation and oxygenation in pregnant sheep. What is the main finding and its importance? Fetuses from resveratrol-treated ewes were significantly larger and exhibited a haemodynamic profile that might promote peripheral growth. Absolute uterine artery blood flow was positively correlated with umbilical vein oxygen saturation, absolute fetal oxygen delivery and fetal growth. Increasing uterine artery blood flow with compounds such as resveratrol might have clinical significance for pregnancy conditions in which fetal growth and oxygenation are compromised. ABSTRACT: High placental vascular resistance hinders uterine artery (UtA) blood flow and fetal substrate delivery. In the same group of animals as the present study, we have previously shown that resveratrol (RSV) increases UtA blood flow, fetal weight and oxygenation in an ovine model of human pregnancy. However, the mechanisms behind changes in growth and the effects of increases in UtA blood flow on fetal circulatory physiology have yet to be investigated. Twin-bearing ewes received s.c. vehicle (VEH, n = 5) or RSV (n = 6) delivery systems at 113 days of gestation (term = 150 days). Magnetic resonance imaging was performed at 123-124 days to quantify fetal volume, blood flow and oxygen saturation of major fetal vessels. At 128 days, i.v. infusions of sodium nitroprusside and phenylephrine were administered to study the vascular tone of the fetal descending aorta. Maternal RSV increased fetal body volume (P = 0.0075) and weight (P = 0.0358), with no change in brain volume or brain weight. There was a positive relationship between absolute UtA blood flow and umbilical vein oxygen saturation, absolute fetal oxygen delivery and combined fetal twin volume (all P ≤ 0.05). There were no differences between groups in fetal haemodynamics or blood pressure regulation except for higher blood flow to the lower body in RSV fetuses (P = 0.0170). The observed increase in fetal weight might be helpful in pregnancy conditions in which fetal growth and oxygen delivery are compromised. Further preclinical investigations on the mechanism(s) accounting for these changes and the potential to improve growth in complicated pregnancies are warranted.


Assuntos
Placenta , Artéria Uterina , Animais , Pressão Sanguínea , Feminino , Feto , Hemodinâmica , Gravidez , Resveratrol/farmacologia , Ovinos , Artéria Uterina/fisiologia
18.
Physiol Genomics ; 52(3): 143-159, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961761

RESUMO

There are critical molecular mechanisms that can be activated to induce myocardial repair, and in humans this is most efficient during fetal development. The timing of heart development in relation to birth and the size/electrophysiology of the heart are similar in humans and sheep, providing a model to investigate the repair capacity of the mammalian heart and how this can be applied to adult heart repair. Myocardial infarction was induced by ligation of the left anterior descending coronary artery in fetal (105 days gestation when cardiomyocytes are proliferative) and adolescent sheep (6 mo of age when all cardiomyocytes have switched to an adult phenotype). An ovine gene microarray was used to compare gene expression in sham and infarcted (remote, border and infarct areas) cardiac tissue from fetal and adolescent hearts. The gene response to myocardial infarction was less pronounced in fetal compared with adolescent sheep hearts and there were unique gene responses at each age. There were also region-specific changes in gene expression between each age, in the infarct tissue, tissue bordering the infarct, and tissue remote from the infarction. In total, there were 880 genes that responded to MI uniquely in the adolescent samples compared with 170 genes in the fetal response, as well as 742 overlap genes that showed concordant direction of change responses to infarction at both ages. In response to myocardial infarction, there were specific changes in genes within pathways of mitochondrial oxidation, muscle contraction, and hematopoietic cell lineages, suggesting that the control of energy utilization and immune function are critical for effective heart repair. The more restricted gene response in the fetus may be an important factor in its enhanced capacity for cardiac repair.


Assuntos
Coração Fetal/fisiopatologia , Infarto do Miocárdio/genética , Regeneração/genética , Transcriptoma , Fatores Etários , Animais , Modelos Animais de Doenças , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Análise Serial de Tecidos/métodos , Regulação para Cima/genética
19.
J Physiol ; 598(21): 4957-4967, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32776527

RESUMO

KEY POINTS: The ductus venosus (DV) is a dynamic fetal shunt that allows substrate-rich blood from the umbilical vein to bypass the hepatic circulation. In vitro studies suggest a direct role of prostaglandin I2 (PGI2 ) in the regulation of DV tone; however, the extent of this regulation has not been determined in utero. 4D flow and T2 oximetry magnetic resonance imaging can be combined to determine blood flow and oxygen delivery within the fetal circulation. PGI2 increases DV shunting of substrate-rich blood but this does not increase cerebral oxygen delivery. ABSTRACT: During fetal development, the maintenance of adequate oxygen and nutrient supply to vital organs is regulated through specialized fetal shunts. One of these shunts, the ductus venosus (DV), allows oxygen-rich blood to preferentially stream from the placenta toward the heart and brain. Herein, we combine magnetic resonance imaging (MRI) techniques that measure blood flow (4D flow) and oxygen saturation (T2 oximetry) in the fetal circuit to determine whether umbilical vein infusion of prostaglandin I2 (PGI2 , regulator of DV tone ex utero) directly dilates the DV and thus increases the preferential streaming of oxygen-rich blood toward the brain. At 114-115 days gestational age (dGA; term = 150 days), fetal sheep (n = 6) underwent surgery to implant vascular catheters in the fetal femoral artery, femoral vein, amniotic cavity and umbilical vein. Fetal MRI scans were performed at 119-124 dGA. 4D flow and T2 oximetry were performed to measure blood flow and oxygen saturation across the fetal circulation in both a basal state and whilst the fetus was receiving a continuous infusion of PGI2 . The proportion of oxygenated blood that passed through the DV from the umbilical vein was increased by PGI2 . Cerebral oxygen delivery was unchanged in the PGI2 state. This may be a result of decreased flow from the right to left side of the heart as blood flow through the foramen ovale was decreased by PGI2 . We have shown that although PGI2 acts on the DV to increase the proportion of oxygen-rich blood that bypasses the liver, this does not increase cerebral oxygen delivery in the fetal sheep.


Assuntos
Epoprostenol , Oxigênio , Animais , Velocidade do Fluxo Sanguíneo , Feminino , Feto , Gravidez , Ovinos , Veias Umbilicais
20.
J Physiol ; 598(13): 2557-2573, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32378201

RESUMO

KEY POINTS: The application of fetal cardiovascular magnetic resonance imaging (CMR) to assess fetal cardiovascular physiology and cardiac function through the quantification of ventricular volumes has previously been investigated, but the approach has not yet been fully validated. Ventricular output measurements calculated from heart rate and stroke volumes (SV) of the right and left ventricles measured by ventricular volumetry (VV) exhibited a high level of agreement with phase-contrast (PC) blood flow measurements in the main pulmonary artery and ascending aorta, respectively. Ejection fraction of the right ventricle, which is lower than that of the left ventricle in postnatal subjects, was similar to the left ventricular ejection fraction in the fetus; probably due to the different loading conditions present in the fetal circulation. This study provides evidence to support the reliability of VV in the sheep fetus, providing evidence for its use in animal models of human diseases affecting the fetal circulation. ABSTRACT: The application of ventricular volumetry (VV) by cardiovascular magnetic resonance imaging (CMR) in the fetus remains challenging due to the small size of the fetal heart and high heart rate. The reliability of this technique in utero has not yet been established. The aim of this study was to assess the feasibility and reliability of VV in a fetal sheep model of human pregnancy. Right and left ventricular outputs by stroke volume (SV) measured using VV were compared with 2D phase-contrast (PC) CMR measurements of blood flow in the main pulmonary artery (MPA) and ascending aorta (AAo). At 124-140 days (d) gestation, singleton bearing Merino ewes underwent CMR under general anaesthesia using fetal femoral artery catheters, implanted at 109-117d, to trigger cine steady state free precession acquisitions of ventricular short-axis stacks. The short-axis cine stacks were segmented at end-systole and end-diastole, yielding right and left ventricular SV, ejection fraction, and cardiac outputs (SV × heart rate). PC cine acquisitions of MPA and AAo were analysed to measure blood flow, which served as comparators for the right and left cardiac outputs by VV. There was good correlation and agreement between VV and PC measures of ventricular outputs with no significant bias (r2  = 0.926; P < 0.0001; Bias = -4.7 ± 10.5 ml min-1  kg-1 ; 95% limits of agreement: -15.9 to 25.2 ml min-1  kg-1 ). This study validates fetal VV by CMR in a large animal model of human pregnancy and provides preliminary reference values of fetal sheep right and left ventricles in late gestation.


Assuntos
Ventrículos do Coração , Função Ventricular Esquerda , Animais , Estudos de Viabilidade , Feminino , Ventrículos do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Gravidez , Artéria Pulmonar , Reprodutibilidade dos Testes , Ovinos , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA