Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell ; 184(14): 3748-3761.e18, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171308

RESUMO

Lateral intraparietal (LIP) neurons represent formation of perceptual decisions involving eye movements. In circuit models for these decisions, neural ensembles that encode actions compete to form decisions. Consequently, representation and readout of the decision variables (DVs) are implemented similarly for decisions with identical competing actions, irrespective of input and task context differences. Further, DVs are encoded as partially potentiated action plans through balance of activity of action-selective ensembles. Here, we test those core principles. We show that in a novel face-discrimination task, LIP firing rates decrease with supporting evidence, contrary to conventional motion-discrimination tasks. These opposite response patterns arise from similar mechanisms in which decisions form along curved population-response manifolds misaligned with action representations. These manifolds rotate in state space based on context, indicating distinct optimal readouts for different tasks. We show similar manifolds in lateral and medial prefrontal cortices, suggesting similar representational geometry across decision-making circuits.


Assuntos
Tomada de Decisões , Percepção de Movimento/fisiologia , Lobo Parietal/fisiologia , Animais , Comportamento Animal , Julgamento , Macaca mulatta , Masculino , Modelos Neurológicos , Neurônios/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia , Psicofísica , Análise e Desempenho de Tarefas , Fatores de Tempo
2.
Nature ; 607(7919): 521-526, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794480

RESUMO

The direct and indirect pathways of the basal ganglia are classically thought to promote and suppress action, respectively1. However, the observed co-activation of striatal direct and indirect medium spiny neurons2 (dMSNs and iMSNs, respectively) has challenged this view. Here we study these circuits in mice performing an interval categorization task that requires a series of self-initiated and cued actions and, critically, a sustained period of dynamic action suppression. Although movement produced the co-activation of iMSNs and dMSNs in the sensorimotor, dorsolateral striatum (DLS), fibre photometry and photo-identified electrophysiological recordings revealed signatures of functional opponency between the two pathways during action suppression. Notably, optogenetic inhibition showed that DLS circuits were largely engaged to suppress-and not promote-action. Specifically, iMSNs on a given hemisphere were dynamically engaged to suppress tempting contralateral action. To understand how such regionally specific circuit function arose, we constructed a computational reinforcement learning model that reproduced key features of behaviour, neural activity and optogenetic inhibition. The model predicted that parallel striatal circuits outside the DLS learned the action-promoting functions, generating the temptation to act. Consistent with this, optogenetic inhibition experiments revealed that dMSNs in the associative, dorsomedial striatum, in contrast to those in the DLS, promote contralateral actions. These data highlight how opponent interactions between multiple circuit- and region-specific basal ganglia processes can lead to behavioural control, and establish a critical role for the sensorimotor indirect pathway in the proactive suppression of tempting actions.


Assuntos
Corpo Estriado , Modelos Neurológicos , Inibição Neural , Vias Neurais , Neurônios , Animais , Simulação por Computador , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Camundongos , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Optogenética
3.
Neural Comput ; 36(5): 803-857, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38658028

RESUMO

Deep feedforward and recurrent neural networks have become successful functional models of the brain, but they neglect obvious biological details such as spikes and Dale's law. Here we argue that these details are crucial in order to understand how real neural circuits operate. Towards this aim, we put forth a new framework for spike-based computation in low-rank excitatory-inhibitory spiking networks. By considering populations with rank-1 connectivity, we cast each neuron's spiking threshold as a boundary in a low-dimensional input-output space. We then show how the combined thresholds of a population of inhibitory neurons form a stable boundary in this space, and those of a population of excitatory neurons form an unstable boundary. Combining the two boundaries results in a rank-2 excitatory-inhibitory (EI) network with inhibition-stabilized dynamics at the intersection of the two boundaries. The computation of the resulting networks can be understood as the difference of two convex functions and is thereby capable of approximating arbitrary non-linear input-output mappings. We demonstrate several properties of these networks, including noise suppression and amplification, irregular activity and synaptic balance, as well as how they relate to rate network dynamics in the limit that the boundary becomes soft. Finally, while our work focuses on small networks (5-50 neurons), we discuss potential avenues for scaling up to much larger networks. Overall, our work proposes a new perspective on spiking networks that may serve as a starting point for a mechanistic understanding of biological spike-based computation.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Inibição Neural , Redes Neurais de Computação , Neurônios , Dinâmica não Linear , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Inibição Neural/fisiologia , Humanos , Animais , Rede Nervosa/fisiologia , Sinapses/fisiologia , Simulação por Computador
4.
PLoS Comput Biol ; 16(3): e1007692, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176682

RESUMO

Networks based on coordinated spike coding can encode information with high efficiency in the spike trains of individual neurons. These networks exhibit single-neuron variability and tuning curves as typically observed in cortex, but paradoxically coincide with a precise, non-redundant spike-based population code. However, it has remained unclear whether the specific synaptic connectivities required in these networks can be learnt with local learning rules. Here, we show how to learn the required architecture. Using coding efficiency as an objective, we derive spike-timing-dependent learning rules for a recurrent neural network, and we provide exact solutions for the networks' convergence to an optimal state. As a result, we deduce an entire network from its input distribution and a firing cost. After learning, basic biophysical quantities such as voltages, firing thresholds, excitation, inhibition, or spikes acquire precise functional interpretations.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Aprendizagem/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Rede Nervosa/fisiologia
5.
Nature ; 562(7727): 350-351, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333590
6.
PLoS Comput Biol ; 11(3): e1004082, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25793393

RESUMO

All of our perceptual experiences arise from the activity of neural populations. Here we study the formation of such percepts under the assumption that they emerge from a linear readout, i.e., a weighted sum of the neurons' firing rates. We show that this assumption constrains the trial-to-trial covariance structure of neural activities and animal behavior. The predicted covariance structure depends on the readout parameters, and in particular on the temporal integration window w and typical number of neurons K used in the formation of the percept. Using these predictions, we show how to infer the readout parameters from joint measurements of a subject's behavior and neural activities. We consider three such scenarios: (1) recordings from the complete neural population, (2) recordings of neuronal sub-ensembles whose size exceeds K, and (3) recordings of neuronal sub-ensembles that are smaller than K. Using theoretical arguments and artificially generated data, we show that the first two scenarios allow us to recover the typical spatial and temporal scales of the readout. In the third scenario, we show that the readout parameters can only be recovered by making additional assumptions about the structure of the full population activity. Our work provides the first thorough interpretation of (feed-forward) percept formation from a population of sensory neurons. We discuss applications to experimental recordings in classic sensory decision-making tasks, which will hopefully provide new insights into the nature of perceptual integration.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Biologia Computacional , Simulação por Computador , Haplorrinos , Reprodutibilidade dos Testes , Fatores de Tempo
7.
PLoS Comput Biol ; 9(11): e1003258, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244113

RESUMO

Two observations about the cortex have puzzled neuroscientists for a long time. First, neural responses are highly variable. Second, the level of excitation and inhibition received by each neuron is tightly balanced at all times. Here, we demonstrate that both properties are necessary consequences of neural networks that represent information efficiently in their spikes. We illustrate this insight with spiking networks that represent dynamical variables. Our approach is based on two assumptions: We assume that information about dynamical variables can be read out linearly from neural spike trains, and we assume that neurons only fire a spike if that improves the representation of the dynamical variables. Based on these assumptions, we derive a network of leaky integrate-and-fire neurons that is able to implement arbitrary linear dynamical systems. We show that the membrane voltage of the neurons is equivalent to a prediction error about a common population-level signal. Among other things, our approach allows us to construct an integrator network of spiking neurons that is robust against many perturbations. Most importantly, neural variability in our networks cannot be equated to noise. Despite exhibiting the same single unit properties as widely used population code models (e.g. tuning curves, Poisson distributed spike trains), balanced networks are orders of magnitudes more reliable. Our approach suggests that spikes do matter when considering how the brain computes, and that the reliability of cortical representations could have been strongly underestimated.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Modelos Estatísticos , Algoritmos , Biologia Computacional , Reprodutibilidade dos Testes
8.
Curr Biol ; 33(18): 3911-3925.e6, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37689065

RESUMO

In many brain areas, neuronal activity is associated with a variety of behavioral and environmental variables. In particular, neuronal responses in the zebrafish hindbrain relate to oculomotor and swimming variables as well as sensory information. However, the precise functional organization of the neurons has been difficult to unravel because neuronal responses are heterogeneous. Here, we used dimensionality reduction methods on neuronal population data to reveal the role of the hindbrain in visually driven oculomotor behavior and swimming. We imaged neuronal activity in zebrafish expressing GCaMP6s in the nucleus of almost all neurons while monitoring the behavioral response to gratings that rotated with different speeds. We then used reduced-rank regression, a method that condenses the sensory and motor variables into a smaller number of "features," to predict the fluorescence traces of all ROIs (regions of interest). Despite the potential complexity of the visuo-motor transformation, our analysis revealed that a large fraction of the population activity can be explained by only two features. Based on the contribution of these features to each ROI's activity, ROIs formed three clusters. One cluster was related to vergent movements and swimming, whereas the other two clusters related to leftward and rightward rotation. Voxels corresponding to these clusters were segregated anatomically, with leftward and rightward rotation clusters located selectively to the left and right hemispheres, respectively. Just as described in many cortical areas, our analysis revealed that single-neuron complexity co-exists with a simpler population-level description, thereby providing insights into the organization of visuo-motor transformations in the hindbrain.


Assuntos
Rombencéfalo , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Rotação , Rombencéfalo/fisiologia , Encéfalo/fisiologia , Natação
9.
Elife ; 112022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35635432

RESUMO

Neural systems are remarkably robust against various perturbations, a phenomenon that still requires a clear explanation. Here, we graphically illustrate how neural networks can become robust. We study spiking networks that generate low-dimensional representations, and we show that the neurons' subthreshold voltages are confined to a convex region in a lower-dimensional voltage subspace, which we call a 'bounding box'. Any changes in network parameters (such as number of neurons, dimensionality of inputs, firing thresholds, synaptic weights, or transmission delays) can all be understood as deformations of this bounding box. Using these insights, we show that functionality is preserved as long as perturbations do not destroy the integrity of the bounding box. We suggest that the principles underlying robustness in these networks - low-dimensional representations, heterogeneity of tuning, and precise negative feedback - may be key to understanding the robustness of neural systems at the circuit level.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Neurônios/fisiologia
10.
Nat Neurosci ; 25(6): 738-748, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668173

RESUMO

Reward expectations based on internal knowledge of the external environment are a core component of adaptive behavior. However, internal knowledge may be inaccurate or incomplete due to errors in sensory measurements. Some features of the environment may also be encoded inaccurately to minimize representational costs associated with their processing. In this study, we investigated how reward expectations are affected by features of internal representations by studying behavior and dopaminergic activity while mice make time-based decisions. We show that several possible representations allow a reinforcement learning agent to model animals' overall performance during the task. However, only a small subset of highly compressed representations simultaneously reproduced the co-variability in animals' choice behavior and dopaminergic activity. Strikingly, these representations predict an unusual distribution of response times that closely match animals' behavior. These results inform how constraints of representational efficiency may be expressed in encoding representations of dynamic cognitive variables used for reward-based computations.


Assuntos
Dopamina , Recompensa , Animais , Comportamento de Escolha/fisiologia , Cognição , Dopamina/fisiologia , Camundongos , Reforço Psicológico
11.
Nat Commun ; 13(1): 1099, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232956

RESUMO

Brain function relies on the coordination of activity across multiple, recurrently connected brain areas. For instance, sensory information encoded in early sensory areas is relayed to, and further processed by, higher cortical areas and then fed back. However, the way in which feedforward and feedback signaling interact with one another is incompletely understood. Here we investigate this question by leveraging simultaneous neuronal population recordings in early and midlevel visual areas (V1-V2 and V1-V4). Using a dimensionality reduction approach, we find that population interactions are feedforward-dominated shortly after stimulus onset and feedback-dominated during spontaneous activity. The population activity patterns most correlated across areas were distinct during feedforward- and feedback-dominated periods. These results suggest that feedforward and feedback signaling rely on separate "channels", which allows feedback signals to not directly affect activity that is fed forward.


Assuntos
Córtex Visual , Retroalimentação , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Vias Visuais/fisiologia
12.
Nat Comput Sci ; 2(8): 512-525, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38177794

RESUMO

Technological advances now allow us to record from large populations of neurons across multiple brain areas. These recordings may illuminate how communication between areas contributes to brain function, yet a substantial barrier remains: how do we disentangle the concurrent, bidirectional flow of signals between populations of neurons? We propose here a dimensionality reduction framework, delayed latents across groups (DLAG), that disentangles signals relayed in each direction, identifies how these signals are represented by each population and characterizes how they evolve within and across trials. We demonstrate that DLAG performs well on synthetic datasets similar in scale to current neurophysiological recordings. Then we study simultaneously recorded populations in primate visual areas V1 and V2, where DLAG reveals signatures of bidirectional yet selective communication. Our framework lays a foundation for dissecting the intricate flow of signals across populations of neurons, and how this signalling contributes to cortical computation.


Assuntos
Córtex Visual , Animais , Córtex Visual/fisiologia , Neurônios/fisiologia , Encéfalo , Mapeamento Encefálico , Neurofisiologia
13.
J Neurosci ; 30(1): 350-60, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20053916

RESUMO

How does the brain store information over a short period of time? Typically, the short-term memory of items or values is thought to be stored in the persistent activity of neurons in higher cortical areas. However, the activity of these neurons often varies strongly in time, even if time is unimportant for whether or not rewards are received. To elucidate this interaction of time and memory, we reexamined the activity of neurons in the prefrontal cortex of monkeys performing a working memory task. As often observed in higher cortical areas, different neurons have highly heterogeneous patterns of activity, making interpretation of the data difficult. To overcome these problems, we developed a method that finds a new representation of the data in which heterogeneity is much reduced, and time- and memory-related activities became separate and easily interpretable. This new representation consists of a few fundamental activity components that capture 95% of the firing rate variance of >800 neurons. Surprisingly, the memory-related activity components account for <20% of this firing rate variance. The observed heterogeneity of neural responses results from random combinations of these fundamental components. Based on these components, we constructed a generative linear model of the network activity. The model suggests that the representations of time and memory are maintained by separate mechanisms, even while sharing a common anatomical substrate. Testable predictions of this hypothesis are proposed. We suggest that our method may be applied to data from other tasks in which neural responses are highly heterogeneous across neurons, and dependent on more than one variable.


Assuntos
Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Animais , Macaca mulatta , Memória/fisiologia
14.
Curr Opin Neurobiol ; 65: 59-69, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142111

RESUMO

The brain is composed of many functionally distinct areas. This organization supports distributed processing, and requires the coordination of signals across areas. Our understanding of how populations of neurons in different areas interact with each other is still in its infancy. As the availability of recordings from large populations of neurons across multiple brain areas increases, so does the need for statistical methods that are well suited for dissecting and interrogating these recordings. Here we review multivariate statistical methods that have been, or could be, applied to this class of recordings. By leveraging population responses, these methods can provide a rich description of inter-areal interactions. At the same time, these methods can introduce interpretational challenges. We thus conclude by discussing how to interpret the outputs of these methods to further our understanding of inter-areal interactions.


Assuntos
Encéfalo , Neurônios
15.
Trends Neurosci ; 43(9): 725-737, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32771224

RESUMO

Nearly all brain functions involve routing neural activity among a distributed network of areas. Understanding this routing requires more than a description of interareal anatomical connectivity: it requires understanding what controls the flow of signals through interareal circuitry and how this communication might be modulated to allow flexible behavior. Here we review proposals of how communication, particularly between visual cortical areas, is instantiated and modulated, highlighting recent work that offers new perspectives. We suggest transitioning from a focus on assessing changes in the strength of interareal interactions, as often seen in studies of interareal communication, to a broader consideration of how different signaling schemes might contribute to computation. To this end, we discuss a set of features that might be desirable for a communication scheme.


Assuntos
Córtex Visual , Comunicação , Humanos
16.
Neuron ; 47(3): 447-56, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16055067

RESUMO

According to Barlow's seminal "efficient coding hypothesis," the coding strategy of sensory neurons should be matched to the statistics of stimuli that occur in an animal's natural habitat. Using an automatic search technique, we here test this hypothesis and identify stimulus ensembles that sensory neurons are optimized for. Focusing on grasshopper auditory receptor neurons, we find that their optimal stimulus ensembles differ from the natural environment, but largely overlap with a behaviorally important sub-ensemble of the natural sounds. This indicates that the receptors are optimized for peak rather than average performance. More generally, our results suggest that the coding strategies of sensory neurons are heavily influenced by differences in behavioral relevance among natural stimuli.


Assuntos
Estimulação Acústica/métodos , Vias Auditivas/fisiologia , Comportamento Animal/fisiologia , Meio Ambiente , Modelos Neurológicos , Neurônios Aferentes/fisiologia , Potenciais de Ação , Animais , Locusta migratoria , Tempo de Reação
17.
Curr Opin Neurobiol ; 17(4): 430-6, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17689952

RESUMO

Sensory systems extract behaviorally relevant information from a continuous stream of complex high-dimensional input signals. Understanding the detailed dynamics and precise neural code, even of a single neuron, is therefore a non-trivial task. Automated closed-loop approaches that integrate data analysis in the experimental design ease the investigation of sensory systems in three directions: First, adaptive sampling speeds up the data acquisition and thus increases the yield of an experiment. Second, model-driven stimulus exploration improves the quality of experimental data needed to discriminate between alternative hypotheses. Third, information-theoretic data analyses open up novel ways to search for those stimuli that are most efficient in driving a given neuron in terms of its firing rate or coding quality. Examples from different sensory systems show that, in all three directions, substantial progress can be achieved once rapid online data analysis, adaptive sampling, and computational modeling are tightly integrated into experiments.


Assuntos
Adaptação Fisiológica/fisiologia , Teoria da Informação , Sensação/fisiologia , Vias Aferentes/fisiologia , Animais , Humanos , Modelos Neurológicos , Redes Neurais de Computação
18.
Curr Opin Neurobiol ; 58: 112-121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31563083

RESUMO

A central tenet of neuroscience is that the brain works through large populations of interacting neurons. With recent advances in recording techniques, the inner working of these populations has come into full view. Analyzing the resulting large-scale data sets is challenging because of the often complex and 'mixed' dependency of neural activities on experimental parameters, such as stimuli, decisions, or motor responses. Here we review recent insights gained from analyzing these data with dimensionality reduction methods that 'demix' these dependencies. We demonstrate that the mappings from (carefully chosen) experimental parameters to population activities appear to be typical and stable across tasks, brain areas, and animals, and are often identifiable by linear methods. By considering when and why dimensionality reduction and demixing work well, we argue for a view of population coding in which populations represent (demixed) latent signals, corresponding to stimuli, decisions, motor responses, and so on. These latent signals are encoded into neural population activity via non-linear mappings and decoded via linear readouts. We explain how such a scheme can facilitate the propagation of information across cortical areas, and we review neural network architectures that can reproduce the encoding and decoding of latent signals in population activities. These architectures promise a link from the biophysics of single neurons to the activities of neural populations.


Assuntos
Redes Neurais de Computação , Neurônios , Animais , Encéfalo , Modelos Neurológicos
19.
Elife ; 82019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30969167

RESUMO

The accuracy of the neural code depends on the relative embedding of signal and noise in the activity of neural populations. Despite a wealth of theoretical work on population codes, there are few empirical characterizations of the high-dimensional signal and noise subspaces. We studied the geometry of population codes in the rat auditory cortex across brain states along the activation-inactivation continuum, using sounds varying in difference and mean level across the ears. As the cortex becomes more activated, single-hemisphere populations go from preferring contralateral loud sounds to a symmetric preference across lateralizations and intensities, gain-modulation effectively disappears, and the signal and noise subspaces become approximately orthogonal to each other and to the direction corresponding to global activity modulations. Level-invariant decoding of sound lateralization also becomes possible in the active state. Our results provide an empirical foundation for the geometry and state-dependence of cortical population codes.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva , Estimulação Acústica , Animais , Ratos
20.
Neuron ; 102(1): 249-259.e4, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30770252

RESUMO

Most brain functions involve interactions among multiple, distinct areas or nuclei. For instance, visual processing in primates requires the appropriate relaying of signals across many distinct cortical areas. Yet our understanding of how populations of neurons in interconnected brain areas communicate is in its infancy. Here we investigate how trial-to-trial fluctuations of population responses in primary visual cortex (V1) are related to simultaneously recorded population responses in area V2. Using dimensionality reduction methods, we find that V1-V2 interactions occur through a communication subspace: V2 fluctuations are related to a small subset of V1 population activity patterns, distinct from the largest fluctuations shared among neurons within V1. In contrast, interactions between subpopulations within V1 are less selective. We propose that the communication subspace may be a general, population-level mechanism by which activity can be selectively routed across brain areas.


Assuntos
Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Macaca fascicularis , Masculino , Vias Neurais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA