Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 115(2): 301-316, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37243907

RESUMO

In the present study, we present callus grafting, comprising a method for reproducibly generating tissue chimeras from callus cultures of Arabidopsis thaliana. In this way, callus cultures of different genetic backgrounds may be co-cultivated such that cell-to-cell connectivity is achieved as a chimeric tissue is formed. To track intercellular connectivity and transport between non-clonal callus cells, we used transgenic lines expressing fluorescently tagged mobile and non-mobile fusion constructs. Using fluorescently-labelled reporter lines that label plasmodesmata, we show that secondary complex plasmodesmata are present at the cell walls of connected cells. We use this system to investigate cell-to-cell transport across the callus graft junction and show that different proteins and RNAs are mobile between non-clonal callus cells. Finally, we take advantage of the callus culture system to probe intercellular connectivity of grafted leaf and root calli and the effect of different light regimes of cell-to-cell transport. Taking advantage of the ability of callus to be cultivated in the complete absence of light, we show that the rate of silencing spread is significantly decreased in chimeric calli cultivated in total darkness. We propose that callus grafting is a fast and reliable method for analysing the capacity of a macromolecule to be exchanged between cells independent of the vasculature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Transporte Biológico/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inativação Gênica , Plasmodesmos/metabolismo
2.
Plant Physiol ; 188(2): 861-878, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34850215

RESUMO

Although several large-scale single-cell RNA sequencing (scRNAseq) studies addressing the root of Arabidopsis (Arabidopsis thaliana) have been published, there is still need for a de novo reference map for both root and especially above-ground cell types. As the plants' transcriptome substantially changes throughout the day, shaped by the circadian clock, we performed scRNAseq on both Arabidopsis root and above-ground tissues at defined times of the day. For the root scRNAseq analysis, we used tissue-specific reporter lines grown on plates and harvested at the end of the day (ED). In addition, we submitted above-ground tissues from plants grown on soil at ED and end of the night to scRNAseq, which allowed us to identify common cell types/markers between root and shoot and uncover transcriptome changes to above-ground tissues depending on the time of the day. The dataset was also exploited beyond the traditional scRNAseq analysis to investigate non-annotated and di-cistronic transcripts. We experimentally confirmed the predicted presence of some of these transcripts and also addressed the potential function of a previously unidentified marker gene for dividing cells. In summary, this work provides insights into the spatial control of gene expression from nearly 70,000 cells of Arabidopsis for below- and whole above-ground tissue at single-cell resolution at defined time points.


Assuntos
Arabidopsis/química , Raízes de Plantas/química , Brotos de Planta/química , Transcriptoma , Ritmo Circadiano , Análise de Célula Única
3.
Plant J ; 98(1): 153-164, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548978

RESUMO

Cell-, tissue- or organ-specific inducible expression systems are powerful tools for functional analysis of changes to the pattern, level or timing of gene expression. However, plant researchers lack standardised reagents that promote reproducibility across the community. Here, we report the development and functional testing of a Gateway-based system for quantitatively, spatially and temporally controlling inducible gene expression in Arabidopsis that overcomes several drawbacks of the legacy systems. We used this modular driver/effector system with intrinsic reporting of spatio-temporal promoter activity to generate 18 well-characterised homozygous transformed lines showing the expected expression patterns specific for the major cell types of the Arabidopsis root; seed and plasmid vectors are available through the Arabidopsis stock centre. The system's tight regulation was validated by assessing the effects of diphtheria toxin A chain expression. We assessed the utility of Production of Anthocyanin Pigment 1 (PAP1) as an encoded effector mediating cell-autonomous marks. With this shared resource of characterised reference driver lines, which can be expanded with additional promoters and the use of other fluorescent proteins, we aim to contribute towards enhancing reproducibility of qualitative and quantitative analyses.


Assuntos
Arabidopsis/genética , Genes Reporter , Antocianinas/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estradiol/metabolismo , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nat Biotechnol ; 41(7): 958-967, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36593415

RESUMO

Generation of stable gene-edited plant lines using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) requires a lengthy process of outcrossing to eliminate CRISPR-Cas9-associated sequences and produce transgene-free lines. We have addressed this issue by designing fusions of Cas9 and guide RNA transcripts to tRNA-like sequence motifs that move RNAs from transgenic rootstocks to grafted wild-type shoots (scions) and achieve heritable gene editing, as demonstrated in wild-type Arabidopsis thaliana and Brassica rapa. The graft-mobile gene editing system enables the production of transgene-free offspring in one generation without the need for transgene elimination, culture recovery and selection, or use of viral editing vectors. We anticipate that using graft-mobile editing systems for transgene-free plant production may be applied to a wide range of breeding programs and crop plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Transgenes/genética
5.
Methods Mol Biol ; 2457: 299-312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349149

RESUMO

A callus is a semi-disorganized tissue that can be induced to develop from diverse tissues by the addition of exogenous hormones. The fast growth and ease of propagation have made callus cultures useful for creating a wide variety of different experimental systems.Here, we describe a detailed and simple procedure by which different, non-clonal calli from transgenic and wild-type A. thaliana plants can be co-cultured such that they form symplasmic connections via plasmodesmata (PD). We show that callus cultures can be used to study both PD formation and transport of macromolecules between non-clonal cells via PD in a tissue lacking a vasculature. Further, we include a simple protocol for a method by which calli can be sectioned to image cells and PD by confocal laser scanning microscopy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Substâncias Macromoleculares/metabolismo , Plantas/metabolismo , Plasmodesmos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA