Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 127(7): 858-68, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26603836

RESUMO

Aggressive double- and triple-hit (DH/TH) diffuse large B-cell lymphomas (DLBCLs) feature activation of Hsp90 stress pathways. Herein, we show that Hsp90 controls posttranscriptional dynamics of key messenger RNA (mRNA) species including those encoding BCL6, MYC, and BCL2. Using a proteomics approach, we found that Hsp90 binds to and maintains activity of eIF4E. eIF4E drives nuclear export and translation of BCL6, MYC, and BCL2 mRNA. eIF4E RNA-immunoprecipitation sequencing in DLBCL suggests that nuclear eIF4E controls an extended program that includes B-cell receptor signaling, cellular metabolism, and epigenetic regulation. Accordingly, eIF4E was required for survival of DLBCL including the most aggressive subtypes, DH/TH lymphomas. Indeed, eIF4E inhibition induces tumor regression in cell line and patient-derived tumorgrafts of TH-DLBCL, even in the presence of elevated Hsp90 activity. Targeting Hsp90 is typically limited by counterregulatory elevation of Hsp70B, which induces resistance to Hsp90 inhibitors. Surprisingly, we identify Hsp70 mRNA as an eIF4E target. In this way, eIF4E inhibition can overcome drug resistance to Hsp90 inhibitors. Accordingly, rational combinatorial inhibition of eIF4E and Hsp90 inhibitors resulted in cooperative antilymphoma activity in DH/TH DLBCL in vitro and in vivo.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Núcleo Celular/metabolismo , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/patologia , Humanos , Linfoma de Células B/patologia , Proteínas de Neoplasias/metabolismo
2.
Blood ; 127(2): 221-32, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26463425

RESUMO

Anaplastic large-cell lymphoma (ALCL) is a clinical and biological heterogeneous disease that includes systemic anaplastic lymphoma kinase (ALK)-positive and ALK-negative entities. To discover biomarkers and/or genes involved in ALK-negative ALCL pathogenesis, we applied the cancer outlier profile analysis algorithm to a gene expression profiling data set including 249 cases of T-cell non-Hodgkin lymphoma and normal T cells. Ectopic coexpression of ERBB4 and COL29A1 genes was detected in 24% of ALK-negative ALCL patients. RNA sequencing and 5' RNA ligase-mediated rapid amplification of complementary DNA ends identified 2 novel ERBB4-truncated transcripts displaying intronic transcription start sites. By luciferase assays, we defined that the expression of ERBB4-aberrant transcripts is promoted by endogenous intronic long terminal repeats. ERBB4 expression was confirmed at the protein level by western blot analysis and immunohistochemistry. Lastly, we demonstrated that ERBB4-truncated forms show oncogenic potentials and that ERBB4 pharmacologic inhibition partially controls ALCL cell growth and disease progression in an ERBB4-positive patient-derived tumorgraft model. In conclusion, we identified a new subclass of ALK-negative ALCL characterized by aberrant expression of ERBB4-truncated transcripts carrying intronic 5' untranslated regions.


Assuntos
Linfoma Anaplásico de Células Grandes/genética , Receptores Proteína Tirosina Quinases/genética , Receptor ErbB-4/genética , Regiões 5' não Traduzidas , Quinase do Linfoma Anaplásico , Animais , Códon sem Sentido , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Linfoma Anaplásico de Células Grandes/classificação , Linfoma Anaplásico de Células Grandes/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células NIH 3T3 , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-4/metabolismo
3.
J Transl Med ; 11: 120, 2013 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-23663506

RESUMO

BACKGROUND: Cancer vaccines are considered a promising therapeutic approach. However, their clinical results are not yet satisfactory. This may be due to the the difficulty of selection of an efficient tumor associated antigen (TAA) and immunization protocol. Indeed, the weak antigenicity of many TAA impairs the design of robust procedures, therefore a systematic analysis to identify the most efficient TAA is mandatory. Here, we performed a study to compare different gp100 vaccination strategies to identify the best strategy to provide a 100% protection against experimental melanoma in a reproducible manner. METHODS: C57BL/6J mice were challenged subcutaneously with B16F10 melanoma cells, after vaccination with: a) mouse or human gp10025-33 peptide plus CpG adjuvant; b) mouse or human gp100 gene; c) mouse or human gp10025-33 peptide-pulsed dendritic cells (DC). Alternatively, a neutralizing anti-IL-10 monoclonal antibody (mAb) was subcutaneously administered at the site of tumor challenge to counteract regulatory cells. Finally, combinatorial treatment was performed associating human gp10025-33 peptide-pulsed DC vaccination with administration of the anti-IL-10 mAb. RESULTS: Vaccination with human gp10025-33 peptide-pulsed DC was the most effective immunization protocol, although not achieving a full protection. Administration of the anti-IL-10 mAb showed also a remarkable protective effect, replicated in mice challenged with a different tumor, Anaplastic Large Cell Lymphoma. When immunization with gp10025-33 peptide-pulsed DC was associated with IL-10 counteraction, a 100% protective effect was consistently achieved. The analysis on the T-cell tumor infiltrates showed an increase of CD4+granzyme+ T-cells and a decreased number of CD4+CD25+Foxp3+ Treg elements from mice treated with either gp10025-33 peptide-pulsed DC vaccination or anti-IL-10 mAb administration. These data suggest that processes of intratumoral re-balance between effector and regulatory T cell subpopulations may play a critical protective role in immunotherapy protocols. CONCLUSIONS: Here we demonstrate that, in the setting of a cancer vaccine strategy, a comparative analysis of different personalized approaches may favour the unveiling of the most effective protocol. Moreover, our findings suggest that counteraction of IL-10 activity may be critical to revert the intratumoral environment promoting Treg polarization, thus increasing the effects of a vaccination against selected TAA.


Assuntos
Vacinas Anticâncer/uso terapêutico , Melanoma/tratamento farmacológico , Antígeno gp100 de Melanoma/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Células da Medula Óssea/citologia , Ilhas de CpG , Células Dendríticas/citologia , Humanos , Imunoterapia/métodos , Interleucina-10/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Baço/metabolismo , Vacinação
4.
Oncoimmunology ; 7(4): e1341032, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632712

RESUMO

Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4+ cells into cytotoxic effectors required the presence of CD8+ cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma.

5.
Mol Cancer Ther ; 11(3): 670-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22203728

RESUMO

Anaplastic lymphoma kinase (ALK) is constitutively activated in a number of human cancer types due to chromosomal translocations, point mutations, and gene amplification and has emerged as an excellent molecular target for cancer therapy. Here we report the identification and preclinical characterization of CEP-28122, a highly potent and selective orally active ALK inhibitor. CEP-28122 is a potent inhibitor of recombinant ALK activity and cellular ALK tyrosine phosphorylation. It induced concentration-dependent growth inhibition/cytotoxicity of ALK-positive anaplastic large-cell lymphoma (ALCL), non-small cell lung cancer (NSCLC), and neuroblastoma cells, and displayed dose-dependent inhibition of ALK tyrosine phosphorylation in tumor xenografts in mice, with substantial target inhibition (>90%) for more than 12 hours following single oral dosing at 30 mg/kg. Dose-dependent antitumor activity was observed in ALK-positive ALCL, NSCLC, and neuroblastoma tumor xenografts in mice administered CEP-28122 orally, with complete/near complete tumor regressions observed following treatment at doses of 30 mg/kg twice daily or higher. Treatment of mice bearing Sup-M2 tumor xenografts for 4 weeks and primary human ALCL tumor grafts for 2 weeks at 55 or 100 mg/kg twice daily led to sustained tumor regression in all mice, with no tumor reemergence for more than 60 days postcessation of treatment. Conversely, CEP-28122 displayed marginal antitumor activity against ALK-negative human tumor xenografts under the same dosing regimens. Administration of CEP-28122 was well tolerated in mice and rats. In summary, CEP-28122 is a highly potent and selective orally active ALK inhibitor with a favorable pharmaceutical and pharmacokinetic profile and robust and selective pharmacologic efficacy against ALK-positive human cancer cells and tumor xenograft models in mice.


Assuntos
Antineoplásicos/farmacologia , Benzocicloeptenos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Administração Oral , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzocicloeptenos/química , Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Immunoblotting , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/química , Receptores Proteína Tirosina Quinases/metabolismo
6.
J Mol Endocrinol ; 47(1): R11-23, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21502284

RESUMO

The receptor tyrosine kinases (RTKs) play a critical role, controlling cell proliferation, survival, and differentiation of normal cells. Their pivotal function has been firmly established in the pathogenesis of many cancers as well. The anaplastic lymphoma kinase (ALK), a transmembrane RTK, originally identified in the nucleophosmin (NPM)-ALK chimera of anaplastic large cell lymphoma, has emerged as a novel tumorigenic player in several human cancers. In this review, we describe the expression of the ALK-RTK, its related fusion proteins, and their molecular mechanisms of activation. Novel tailored strategies are briefly illustrated for the treatment of ALK-positive neoplasms.


Assuntos
Linfoma/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Antineoplásicos/farmacologia , Proteína Tirosina Quinase CSK , Crizotinibe , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfoma/genética , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Piperidinas/farmacologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pirazóis , Piridinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Ativação Transcricional , Translocação Genética , Regulação para Cima/genética , Quinases da Família src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA