Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Psychiatry ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355784

RESUMO

Comparisons and linkage between multiple imaging scales are essential for neural circuit connectomics. Here, we report 20 new recombinant rabies virus (RV) vectors that we have developed for multi-scale and multi-modal neural circuit mapping tools. Our new RV tools for mesoscale imaging express a range of improved fluorescent proteins. Further refinements target specific neuronal subcellular locations of interest. We demonstrate the discovery power of these new tools including the detection of detailed microstructural changes of rabies-labeled neurons in aging and Alzheimer's disease mouse models, live imaging of neuronal activities using calcium indicators, and automated measurement of infected neurons. RVs that encode GFP and ferritin as electron microscopy (EM) and fluorescence microscopy reporters are used for dual EM and mesoscale imaging. These new viral variants significantly expand the scale and power of rabies virus-mediated neural labeling and circuit mapping across multiple imaging scales in health and disease.

2.
J Microsc ; 283(2): 127-144, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33844293

RESUMO

The technique of colour EM that was recently developed enabled localisation of specific macromolecules/proteins of interest by the targeted deposition of diaminobenzidine (DAB) conjugated to lanthanide chelates. By acquiring lanthanide elemental maps by energy-filtered transmission electron microscopy (EFTEM) and overlaying them in pseudo-colour over the conventional greyscale TEM image, a colour EM image is generated. This provides a powerful tool for visualising subcellular component/s, by the ability to clearly distinguish them from the general staining of the endogenous cellular material. Previously, the lanthanide elemental maps were acquired at the high-loss M4,5 edge (excitation of 3d electrons), where the characteristic signal is extremely low and required considerably long exposures. In this paper, we explore the possibility of acquiring the elemental maps of lanthanides at their N4,5 edge (excitation of 4d electrons), which occurring at a much lower energy-loss regime, thereby contains significantly greater total characteristic signal owing to the higher inelastic scattering cross-sections at the N4,5 edge. Acquiring EFTEM lanthanide elemental maps at the N4,5 edge instead of the M4,5 edge, provides ∼4× increase in signal-to-noise and ∼2× increase in resolution. However, the interpretation of the lanthanide maps acquired at the N4,5 edge by the traditional 3-window method, is complicated due to the broad shape of the edge profile and the lower signal-above-background ratio. Most of these problems can be circumvented by the acquisition of elemental maps with the more sophisticated technique of EFTEM Spectrum Imaging (EFTEM SI). Here, we also report the chemical synthesis of novel second-generation DAB lanthanide metal chelate conjugates that contain 2 lanthanide ions per DAB molecule in comparison with 0.5 lanthanide ion per DAB in the first generation. Thereby, fourfold more Ln3+ per oxidised DAB would be deposited providing significant amplification of signal. This paper applies the colour EM technique at the intermediate-loss energy-loss regime to three different cellular targets, namely using mitochondrial matrix-directed APEX2, histone H2B-Nucleosome and EdU-DNA. All the examples shown in the paper are single colour EM images only.


Assuntos
Elementos da Série dos Lantanídeos , Microscopia Eletrônica de Transmissão por Filtração de Energia , Diagnóstico por Imagem , Elétrons , Coloração e Rotulagem
3.
J Cell Sci ; 130(19): 3248-3260, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808085

RESUMO

Each mitochondrial compartment contains varying protein compositions that underlie a diversity of localized functions. Insights into the localization of mitochondrial intermembrane space-bridging (MIB) components will have an impact on our understanding of mitochondrial architecture, dynamics and function. By using the novel visualizable genetic tags miniSOG and APEX2 in cultured mouse cardiac and human astrocyte cell lines and performing electron tomography, we have mapped at nanoscale resolution three key MIB components, Mic19, Mic60 and Sam50 (also known as CHCHD3, IMMT and SAMM50, respectively), in the environment of structural landmarks such as cristae and crista junctions (CJs). Tagged Mic19 and Mic60 were located at CJs, distributed in a network pattern along the mitochondrial periphery and also enriched inside cristae. We discovered an association of Mic19 with cytochrome c oxidase subunit IV. It was also found that tagged Sam50 is not uniformly distributed in the outer mitochondrial membrane and appears to incompletely overlap with Mic19- or Mic60-positive domains, most notably at the CJs.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Linhagem Celular Transformada , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética
4.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625978

RESUMO

Phylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multicelled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches, including correlative fluorescence in situ hybridization-electron microscopy (FISH-EM), transmission electron microscopy (TEM), and serial block face scanning electron microscopy (SBEM) three-dimensional (3D) reconstructions. FISH-EM of methane seep-derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortium types revealed cellular volumes of ANME and their symbiotic partners that were larger than previous estimates based on light microscopy. Polyphosphate-like granule-containing ANME (tentatively termed ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell, and the volume of the cell was larger in proportion to the number of granules inside it, but the percentage of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their ability to perform anaerobic methane oxidation.IMPORTANCE Methane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known of the distinguishing characteristics of these groups. Here, we applied imaging approaches to better understand the properties of these cells. We found unexpected morphological, structural, and volume variability of these uncultured groups by correlating fluorescence labeling of cells with electron microscopy observables.


Assuntos
Archaea/classificação , Archaea/ultraestrutura , Metano/metabolismo , Simbiose , Anaerobiose , Archaea/metabolismo , Deltaproteobacteria/metabolismo , Deltaproteobacteria/ultraestrutura , Sedimentos Geológicos/microbiologia , Hibridização in Situ Fluorescente , Consórcios Microbianos , Microscopia Eletrônica , Oxirredução , Filogenia
5.
Proc Natl Acad Sci U S A ; 112(45): E6166-74, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26512112

RESUMO

Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7(Δpan) mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7(Δpan) mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7(Δpan) mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures.


Assuntos
Células Acinares/fisiologia , Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Homeostase/fisiologia , Proteínas Associadas aos Microtúbulos/deficiência , Pâncreas/citologia , Biossíntese de Proteínas/fisiologia , Animais , Proteína 7 Relacionada à Autofagia , Imunofluorescência , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Microscopia Eletrônica de Transmissão
6.
J Neurosci ; 35(20): 7736-49, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995463

RESUMO

Synthesizing, localizing, and stabilizing new protein copies at synapses are crucial factors in maintaining the synaptic changes required for storing long-term memories. PKMζ recently emerged as a molecule putatively responsible for maintaining encoded memories over time because its presence correlates with late LTP and because its inhibition disrupts LTP in vitro and long-term memory storage in vivo. Here we investigated PKMζ stability in rat neurons to better understand its role during information encoding and storage. We used TimeSTAMP reporters to track the synthesis and degradation of PKMζ as well as a related atypical PKC, PKCλ. These reporters revealed that both PKMζ and PKCλ were upregulated after chemical LTP induction; however, these new PKMζ copies exhibited more rapid turnover than basally produced PKMζ, particularly in dendritic spines. In contrast to PKMζ, new PKCλ copies exhibited elevated stability. Stable information storage over long periods of time is more challenging the shorter the metabolic lifetime of the candidate molecules.


Assuntos
Espinhas Dendríticas/metabolismo , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Proteólise , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Espinhas Dendríticas/fisiologia , Estabilidade Enzimática , Células HEK293 , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Potenciação de Longa Duração , Dados de Sequência Molecular , Proteína Quinase C/genética , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Regulação para Cima
7.
PLoS Biol ; 11(8): e1001640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24013648

RESUMO

Caveolae are an abundant feature of the plasma membrane of many mammalian cell types, and have key roles in mechano-transduction, metabolic regulation, and vascular permeability. Caveolin and cavin proteins, as well as EHD2 and pacsin 2, are all present in caveolae. How these proteins assemble to form a protein interaction network for caveolar morphogenesis is not known. Using in vivo crosslinking, velocity gradient centrifugation, immuno-isolation, and tandem mass spectrometry, we determine that cavins and caveolins assemble into a homogenous 80S complex, which we term the caveolar coat complex. There are no further abundant components within this complex, and the complex excludes EHD2 and pacsin 2. Cavin 1 forms trimers and interacts with caveolin 1 with a molar ratio of about 1∶4. Cavins 2 and 3 compete for binding sites within the overall coat complex, and form distinct subcomplexes with cavin 1. The core interactions between caveolin 1 and cavin 1 are independent of cavin 2, cavin 3, and EHD2 expression, and the cavins themselves can still interact in the absence of caveolin 1. Using immuno-electron microscopy as well as a recently developed protein tag for electron microscopy (MiniSOG), we demonstrate that caveolar coat complexes form a distinct coat all around the caveolar bulb. In contrast, and consistent with our biochemical data, EHD2 defines a different domain at the caveolar neck. 3D electron tomograms of the caveolar coat, labeled using cavin-MiniSOG, show that the caveolar coat is composed of repeating units of a unitary caveolar coat complex.


Assuntos
Cavéolas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/metabolismo , Cavéolas/ultraestrutura , Caveolina 1/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica
8.
Microsc Microanal ; 20(3): 706-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24641915

RESUMO

Energy filtered transmission electron microscopy techniques are regularly used to build elemental maps of spatially distributed nanoparticles in materials and biological specimens. When working with thick biological sections, electron energy loss spectroscopy techniques involving core-loss electrons often require exposures exceeding several minutes to provide sufficient signal to noise. Image quality with these long exposures is often compromised by specimen drift, which results in blurring and reduced resolution. To mitigate drift artifacts, a series of short exposure images can be acquired, aligned, and merged to form a single image. For samples where the target elements have extremely low signal yields, the use of charge coupled device (CCD)-based detectors for this purpose can be problematic. At short acquisition times, the images produced by CCDs can be noisy and may contain fixed pattern artifacts that impact subsequent correlative alignment. Here we report on the use of direct electron detection devices (DDD's) to increase the signal to noise as compared with CCD's. A 3× improvement in signal is reported with a DDD versus a comparably formatted CCD, with equivalent dose on each detector. With the fast rolling-readout design of the DDD, the duty cycle provides a major benefit, as there is no dead time between successive frames.


Assuntos
Astrócitos/ultraestrutura , Células Epiteliais/ultraestrutura , Microscopia Eletrônica de Transmissão por Filtração de Energia/instrumentação , Microscopia Eletrônica de Transmissão por Filtração de Energia/métodos , Razão Sinal-Ruído , Coloração e Rotulagem/métodos , Animais , Encéfalo/patologia , Células HeLa , Humanos , Camundongos Endogâmicos C57BL
9.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895398

RESUMO

We demonstrate limited-tilt, serial section electron tomography (ET), which can non-destructively map brain circuits over large 3D volumes and reveal high-resolution, supramolecular details within subvolumes of interest. We show accelerated ET imaging of thick sections (>500 nm) with the capacity to resolve key features of neuronal circuits including chemical synapses, endocytic structures, and gap junctions. Furthermore, we systematically assessed how imaging parameters affect image quality and speed to enable connectomic-scale projects.

10.
J Biol Chem ; 287(52): 43789-97, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23115245

RESUMO

Protein kinase A-anchoring proteins (AKAPs) provide spatio-temporal specificity for the omnipotent cAMP-dependent protein kinase (PKA) via high affinity interactions with PKA regulatory subunits (PKA-RI, RII). Many PKA-RII-AKAP complexes are heavily tethered to cellular substructures, whereas PKA-RI-AKAP complexes have remained largely undiscovered. Here, using a cAMP affinity-based chemical proteomics strategy in human heart and platelets, we uncovered a novel, ubiquitously expressed AKAP, termed small membrane (sm)AKAP due to its specific localization at the plasma membrane via potential myristoylation/palmitoylation anchors. In vitro binding studies revealed specificity of smAKAP for PKA-RI (K(d) = 7 nM) over PKA-RII (K(d) = 53 nM) subunits, co-expression of smAKAP with the four PKA R subunits revealed an even more exclusive specificity of smAKAP for PKA-RIα/ß in the cellular context. Applying the singlet oxygen-generating electron microscopy probe miniSOG indicated that smAKAP is tethered to the plasma membrane and is particularly dense at cell-cell junctions and within filopodia. Our preliminary functional characterization of smAKAP provides evidence that, like PKA-RII, PKA-RI can be tightly tethered by a novel repertoire of AKAPs, providing a new perspective on spatio-temporal control of cAMP signaling.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Membrana Celular/metabolismo , Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Lipoilação/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Membrana Celular/genética , AMP Cíclico/genética , Proteína Quinase Tipo I Dependente de AMP Cíclico/genética , Feminino , Humanos , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Masculino , Camundongos , Ligação Proteica , Pseudópodes/genética , Pseudópodes/metabolismo
11.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37662194

RESUMO

We introduce Fe-TAML, a small molecule-based peroxidase as a versatile new member of the correlated fluorescence and electron microscopy toolkit. The utility of the probe is demonstrated by high resolution imaging of newly synthesized DNA (through biorthogonal labeling), genetically tagged proteins (using HaloTag), and untagged endogenous proteins (via immunostaining). EM visualization in these applications is facilitated by exploiting Fe-TAML's catalytic activity for the deposition of localized osmiophilic precipitates based on polymerized 3,3'-diaminobenzidine. Optimized conditions for synthesizing and implementing Fe-TAML based probes are also described. Overall, Fe-TAML is a new chemical biology tool that can be used to visualize diverse biomolecular species along nanometer and micron scales within cells.

12.
J Biol Chem ; 286(4): 2918-32, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21081504

RESUMO

The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate of unknown function (Schauble, S., King, C. C., Darshi, M., Koller, A., Shah, K., and Taylor, S. S. (2007) J. Biol. Chem. 282, 14952-14959), and show that it is essential for maintaining crista integrity and mitochondrial function. In the mitochondria, ChChd3 is a peripheral protein of the IM facing the intermembrane space. RNAi knockdown of ChChd3 in HeLa cells resulted in fragmented mitochondria, reduced OPA1 protein levels and impaired fusion, and clustering of the mitochondria around the nucleus along with reduced growth rate. Both the oxygen consumption and glycolytic rates were severely restricted. Ultrastructural analysis of these cells revealed aberrant mitochondrial IM structures with fragmented and tubular cristae or loss of cristae, and reduced crista membrane. Additionally, the crista junction opening diameter was reduced to 50% suggesting remodeling of cristae in the absence of ChChd3. Analysis of the ChChd3-binding proteins revealed that ChChd3 interacts with the IM proteins mitofilin and OPA1, which regulate crista morphology, and the outer membrane protein Sam50, which regulates import and assembly of ß-barrel proteins on the outer membrane. Knockdown of ChChd3 led to almost complete loss of both mitofilin and Sam50 proteins and alterations in several mitochondrial proteins, suggesting that ChChd3 is a scaffolding protein that stabilizes protein complexes involved in maintaining crista architecture and protein import and is thus essential for maintaining mitochondrial structure and function.


Assuntos
Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias Hepáticas/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
13.
mBio ; 13(6): e0161322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36321837

RESUMO

Some Alphaproteobacteria contain intracytoplasmic membranes (ICMs) and proteins homologous to those responsible for the mitochondrial cristae, an observation which has given rise to the hypothesis that the Alphaproteobacteria endosymbiont had already evolved cristae-like structures and functions. However, our knowledge of microbial fine structure is still limited, leaving open the possibility of structurally homologous ICMs outside the Alphaproteobacteria. Here, we report on the detailed characterization of lamellar cristae-like ICMs in environmental sulfate-reducing Desulfobacterota that form syntrophic partnerships with anaerobic methane-oxidizing (ANME) archaea. These structures are junction-bound to the cytoplasmic membrane and resemble the form seen in the lamellar cristae of opisthokont mitochondria. Extending these observations, we also characterized similar structures in Desulfovibrio carbinolicus, a close relative of the magnetotactic D. magneticus, which does not contain magnetosomes. Despite a remarkable structural similarity, the key proteins involved in cristae formation have not yet been identified in Desulfobacterota, suggesting that an analogous, but not a homologous, protein organization system developed during the evolution of some members of Desulfobacterota. IMPORTANCE Working with anaerobic consortia of methane oxidizing ANME archaea and their sulfate-reducing bacterial partners recovered from deep sea sediments and with the related sulfate-reducing bacterial isolate D. carbinolicus, we discovered that their intracytoplasmic membranes (ICMs) appear remarkably similar to lamellar cristae. Three-dimensional electron microscopy allowed for the novel analysis of the nanoscale attachment of ICMs to the cytoplasmic membrane, and these ICMs are structurally nearly identical to the crista junction architecture seen in metazoan mitochondria. However, the core junction-forming proteins must be different. The outer membrane vesicles were observed to bud from syntrophic Desulfobacterota, and darkly stained granules were prominent in both Desulfobacterota and D. carbinolicus. These findings expand the taxonomic breadth of ICM-producing microorganisms and add to our understanding of three-dimensional microbial fine structure in environmental microorganisms.


Assuntos
Archaea , Bactérias , Animais , Anaerobiose , Bactérias/metabolismo , Archaea/metabolismo , Metano/metabolismo , Sulfatos/metabolismo , Oxirredução , Sedimentos Geológicos/microbiologia , Filogenia
14.
ACS Chem Neurosci ; 12(4): 626-639, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33522227

RESUMO

Communication between neurons relies on the release of diverse neurotransmitters, which represent a key-defining feature of a neuron's chemical and functional identity. Neurotransmitters are packaged into vesicles by specific vesicular transporters. However, tools for labeling and imaging synapses and synaptic vesicles based on their neurochemical identity remain limited. We developed a genetically encoded probe to identify glutamatergic synaptic vesicles at the levels of both light and electron microscopy (EM) by fusing the mini singlet oxygen generator (miniSOG) probe to an intralumenal loop of the vesicular glutamate transporter-2. We then used a 3D imaging method, serial block-face scanning EM, combined with a deep learning approach for automatic segmentation of labeled synaptic vesicles to assess the subcellular distribution of transporter-defined vesicles at nanometer scale. These tools represent a new resource for accessing the subcellular structure and molecular machinery of neurotransmission and for transmitter-defined tracing of neuronal connectivity.


Assuntos
Neurônios , Sinapses , Animais , Ácido Glutâmico , Camundongos , Microscopia Eletrônica , Vesículas Sinápticas , Proteína Vesicular 1 de Transporte de Glutamato , Proteína Vesicular 2 de Transporte de Glutamato
15.
Cell Chem Biol ; 26(10): 1407-1416.e5, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31378710

RESUMO

A protein-fragment complementation assay (PCA) for detecting and localizing intracellular protein-protein interactions (PPIs) was built by bisection of miniSOG, a fluorescent flavoprotein derived from the light, oxygen, voltage (LOV)-2 domain of Arabidopsis phototropin. When brought together by interacting proteins, the fragments reconstitute a functional reporter that permits tagged protein complexes to be visualized by fluorescence light microscopy (LM), and then by standard as well as "multicolor" electron microscopy (EM) via the photooxidation of 3-3'-diaminobenzidine and its derivatives.


Assuntos
Proteínas de Arabidopsis/química , Flavoproteínas/química , Proteínas Luminescentes/química , 3,3'-Diaminobenzidina/química , Arabidopsis/química , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Oxirredução , Processos Fotoquímicos , Ligação Proteica
16.
Biochem J ; 408(3): 375-85, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17714073

RESUMO

The C-terminus of the most abundant and best-studied gap-junction protein, connexin43, contains multiple phosphorylation sites and protein-binding domains that are involved in regulation of connexin trafficking and channel gating. It is well-documented that SDS/PAGE of NRK (normal rat kidney) cell lysates reveals at least three connexin43-specific bands (P0, P1 and P2). P1 and P2 are phosphorylated on multiple, unidentified serine residues and are found primarily in gap-junction plaques. In the present study we prepared monoclonal antibodies against a peptide representing the last 23 residues at the C-terminus of connexin43. Immunofluorescence studies showed that one antibody (designated CT1) bound primarily to connexin43 present in the Golgi apparatus, whereas the other antibody (designated IF1) labelled predominately connexin43 present in gap junctions. CT1 immunoprecipitates predominantly the P0 form whereas IF1 recognized all three bands. Peptide mapping, mutational analysis and protein-protein interaction experiments revealed that unphosphorylated Ser364 and/or Ser365 are critical for CT1 binding. The IF1 paratope binds to residues Pro375-Asp379 and requires Pro375 and Pro377. These proline residues are also necessary for ZO-1 interaction. These studies indicate that the conformation of Ser364/Ser365 is important for intracellular localization, whereas the tertiary structure of Pro375-Asp379 is essential in targeting and regulation of gap junctional connexin43.


Assuntos
Anticorpos/imunologia , Conexina 43/química , Junções Comunicantes/química , Complexo de Golgi/química , Animais , Linhagem Celular , Conexina 43/genética , Conexina 43/imunologia , Cães , Eletroforese em Gel de Poliacrilamida , Imunoprecipitação , Microscopia Confocal , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Fosforilação , Conformação Proteica , Ratos
17.
Sci Rep ; 8(1): 7553, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29765060

RESUMO

Biological samples are frequently stained with heavy metals in preparation for examining the macro, micro and ultra-structure using X-ray microtomography and electron microscopy. A single X-ray microtomography scan reveals detailed 3D structure based on staining density, yet it lacks both material composition and functional information. Using a commercially available polychromatic X-ray source, energy integrating detectors and a two-scan configuration labelled by their energy- "High" and "Low", we demonstrate how a specific element, here shown with iron, can be detected from a mixture with other heavy metals. With proper selection of scan configuration, achieving strong overlap of source characteristic emission lines and iron K-edge absorption, iron absorption was enhanced enabling K-edge imaging. Specifically, iron images were obtained by scatter plot material analysis, after selecting specific regions within scatter plots generated from the "High" and "Low" scans. Using this method, we identified iron rich regions associated with an iron staining reaction that marks the nodes of Ranvier along nerve axons within mouse spinal roots, also stained with osmium metal commonly used for electron microscopy.


Assuntos
Axônios/metabolismo , Ferro/análise , Raízes Nervosas Espinhais/diagnóstico por imagem , Microtomografia por Raio-X/instrumentação , Animais , Metais Pesados , Camundongos , Imagens de Fantasmas , Raízes Nervosas Espinhais/metabolismo , Coloração e Rotulagem
18.
Cell Chem Biol ; 23(11): 1417-1427, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27818300

RESUMO

Electron microscopy (EM) remains the primary method for imaging cellular and tissue ultrastructure, although simultaneous localization of multiple specific molecules continues to be a challenge for EM. We present a method for obtaining multicolor EM views of multiple subcellular components. The method uses sequential, localized deposition of different lanthanides by photosensitizers, small-molecule probes, or peroxidases. Detailed view of biological structures is created by overlaying conventional electron micrographs with pseudocolor lanthanide elemental maps derived from distinctive electron energy-loss spectra of each lanthanide deposit via energy-filtered transmission electron microscopy. This results in multicolor EM images analogous to multicolor fluorescence but with the benefit of the full spatial resolution of EM. We illustrate the power of this methodology by visualizing hippocampal astrocytes to show that processes from two astrocytes can share a single synapse. We also show that polyarginine-based cell-penetrating peptides enter the cell via endocytosis, and that newly synthesized PKMζ in cultured neurons preferentially localize to the postsynaptic membrane.


Assuntos
Elementos da Série dos Lantanídeos/análise , Microscopia Eletrônica de Transmissão por Filtração de Energia/métodos , Animais , Astrócitos/ultraestrutura , Peptídeos Penetradores de Células/análise , Células Cultivadas , Cães , Células HEK293 , Hipocampo/citologia , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos BALB C
19.
Invest Ophthalmol Vis Sci ; 45(12): 4352-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15557443

RESUMO

PURPOSE: To assess the relationship between regional variation of axon loss and optic nerve head anatomy in laser-induced experimental glaucoma in the mouse. METHODS: Experimental glaucoma was induced unilaterally in eight NIH Swiss black mice. Intraocular pressure (IOP) was measured for 12 weeks, and the mice were killed. The eyes were enucleated, and both optic nerves were dissected and processed conventionally for electron microscopy. Low- and high-magnification images of the optic nerve cross sections 300 microm posterior to the globe were collected systematically and masked before analysis. For each nerve, cross-sectional area was measured in low-magnification micrographs. Axon number and density were determined in the high-magnification micrographs. Loss of axonal density was compared between the superior and inferior and nasal and temporal areas of the optic nerve cross section. Additional cross-section micrographs were collected at 10- or 20-microm intervals throughout the optic nerve head. RESULTS: In the treated (glaucoma) eyes, mean IOP was 44% higher than that in the control eyes. The optic nerve cross-sectional area, mean axonal density, and total axonal number were significantly less than those in the control eyes (P < 0.01 for each). Axon loss in the superior optic nerve was greater than in the inferior optic nerve in each glaucomatous eye (P = 0.012). The ratio of axonal density in the superior and inferior optic nerve (superior-to-inferior [S/I] ratio) in all treated eyes was <1.0 and significantly lower than that in the control eyes (P = 0.012). The central retinal vessels occupied approximately 20% of the central optic nerve head cross-sectional area, gradually shifted position ventrally as they progressed toward the scleral foramen (the mouse does not have a lamina cribrosa), and exited the inferior retrobulbar optic nerve adjacent to the posterior of the globe. CONCLUSIONS: Ocular hypertension in the mouse eye sufficient to cause optic nerve damage induces preferential loss of superior optic nerve axons. Optic nerve axon loss appeared less among the axons that were near the major optic nerve blood vessels at the scleral foramen. Topographic differences in optic nerve axon loss should be considered when evaluating optic nerve damage in experimental laser-induced glaucoma in the mouse.


Assuntos
Glaucoma/patologia , Nervo Óptico/patologia , Animais , Axônios/patologia , Vasos Sanguíneos/patologia , Glaucoma/fisiopatologia , Pressão Intraocular , Camundongos , Disco Óptico/irrigação sanguínea
20.
Invest Ophthalmol Vis Sci ; 44(10): 4321-30, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14507876

RESUMO

PURPOSE: To evaluate optic nerve damage in mice after laser-induced ocular hypertension. METHODS: Ocular hypertension was induced unilaterally in 13 NIH Black Swiss mice by laser photocoagulation of the limbus. Over the following 12 weeks, intraocular pressure (IOP) was measured at regular intervals by the microneedle method. The optic nerves of these mice and of seven normal untreated mice were then processed conventionally for electron microscopy, and cross sections of the nerve 300 micro m posterior to the globe were collected. Low- and high-magnification images were collected systematically and masked before analysis. For each nerve, cross-sectional area was measured in low-magnification micrographs, and axon and glia numbers were counted in high-magnification micrographs. RESULTS: In normal untreated mice, the average number of axons was 59,597 +/- 3,112 (mean +/- SD). Variation among these measurements was 5.7% +/- 3.9%. After laser treatment, the duration of high IOP ranged from 2 to 12 weeks (6.2 +/- 3.6 weeks, mean +/- SD). The mean IOP in the treated eyes was 1.3 times greater than the mean IOP in the control eyes (P = 0.0012). The maximum IOP in the treated eyes was 1.6 times greater than that observed in the control eyes (P < 0.0001). The optic nerve cross-sectional area, mean axon density, and total number of axons in the treated eyes were significantly less than in the control eyes (28.5% +/- 23.4%, 57.8% +/- 37.8%, and 63.1% +/- 38.1%, respectively; P < 0.005 for each). The decrease in optic nerve cross-sectional area and the positive integral of elevated IOP and duration of IOP elevation correlated significantly with total axon loss (r(2) = 0.79, P < 0.0001 and r(2) = 0.36, P = 0.040, respectively). The number of astrocytes per cross section of optic nerve was significantly greater in the treated eyes than in the control eyes (P = 0.014). CONCLUSIONS: Laser-induced ocular hypertension in mouse eyes can induce optic nerve axon loss that correlates with the magnitude and duration of elevated IOP.


Assuntos
Modelos Animais de Doenças , Hipertensão/complicações , Doenças do Nervo Óptico/etiologia , Animais , Axônios/patologia , Axônios/ultraestrutura , Contagem de Células , Pressão Intraocular , Camundongos , Neuroglia/patologia , Neuroglia/ultraestrutura , Nervo Óptico/ultraestrutura , Doenças do Nervo Óptico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA