Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 206(1): e0028623, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38169295

RESUMO

The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation, and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization, and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting nonCF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short-chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but also altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of CF gut dysbiosis. IMPORTANCE Cystic fibrosis is an autosomal recessive disease that disrupts ion transport at mucosal surfaces, leading to mucus accumulation and altered physiology of both the lungs and the intestines, among other organs, with the resulting altered environment contributing to an imbalance of microbial communities. Culture media representative of the CF airway have been developed and validated; however, no such medium exists for modeling the CF intestine. Here, we develop and validate a first-generation culture medium inclusive of features that are altered in the CF colon. Our findings suggest this novel medium, called CF-MiPro, as a maintenance medium for CF gut microbiome samples and a flexible tool for studying key drivers of CF-associated gut dysbiosis.


Assuntos
Fibrose Cística , Microbioma Gastrointestinal , Microbiota , Adulto , Animais , Humanos , Criança , Fibrose Cística/microbiologia , Disbiose , Sistema Respiratório , Regulador de Condutância Transmembrana em Fibrose Cística
2.
Pediatr Res ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509226

RESUMO

BACKGROUND: Gut-derived metabolites, products of microbial and host co-metabolism, may inform mechanisms underlying children's neurodevelopment. We investigated whether infant fecal metabolites were related to toddler social behavior. METHODS: Stool samples collected from 6-week-olds (n = 86) and 1-year-olds (n = 209) in the New Hampshire Birth Cohort Study (NHBCS) were analyzed using nuclear magnetic resonance spectroscopy metabolomics. Autism-related behavior in 3-year-olds was assessed by caregivers using the Social Responsiveness Scale (SRS-2). To assess the association between metabolites and SRS-2 scores, we used a traditional single-metabolite approach, quantitative metabolite set enrichment (QEA), and self-organizing maps (SOMs). RESULTS: Using a single-metabolite approach and QEA, no individual fecal metabolite or metabolite set at either age was associated with SRS-2 scores. Using the SOM method, fecal metabolites of six-week-olds organized into four profiles, which were unrelated to SRS-2 scores. In 1-year-olds, one of twelve fecal metabolite profiles was associated with fewer autism-related behaviors, with SRS-2 scores 3.4 (95%CI: -7, 0.2) points lower than the referent group. This profile had higher concentrations of lactate and lower concentrations of short chain fatty acids than the reference. CONCLUSIONS: We uncovered metabolic profiles in infant stool associated with subsequent social behavior, highlighting one potential mechanism by which gut bacteria may influence neurobehavior. IMPACT: Differences in host and microbial metabolism may explain variability in neurobehavioral phenotypes, but prior studies do not have consistent results. We applied three statistical techniques to explore fecal metabolite differences related to social behavior, including self-organizing maps (SOMs), a novel machine learning algorithm. A 1-year-old fecal metabolite pattern characterized by high lactate and low short-chain fatty acid concentrations, identified using SOMs, was associated with social behavior less indicative of autism spectrum disorder. Our findings suggest that social behavior may be related to metabolite profiles and that future studies may uncover novel findings by applying the SOM algorithm.

3.
Biostatistics ; 23(3): 926-948, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33720330

RESUMO

In light of the low signal-to-noise nature of many large biological data sets, we propose a novel method to learn the structure of association networks using Gaussian graphical models combined with prior knowledge. Our strategy includes two parts. In the first part, we propose a model selection criterion called structural Bayesian information criterion, in which the prior structure is modeled and incorporated into Bayesian information criterion. It is shown that the popular extended Bayesian information criterion is a special case of structural Bayesian information criterion. In the second part, we propose a two-step algorithm to construct the candidate model pool. The algorithm is data-driven and the prior structure is embedded into the candidate model automatically. Theoretical investigation shows that under some mild conditions structural Bayesian information criterion is a consistent model selection criterion for high-dimensional Gaussian graphical model. Simulation studies validate the superiority of the proposed algorithm over the existing ones and show the robustness to the model misspecification. Application to relative concentration data from infant feces collected from subjects enrolled in a large molecular epidemiological cohort study validates that metabolic pathway involvement is a statistically significant factor for the conditional dependence between metabolites. Furthermore, new relationships among metabolites are discovered which can not be identified by the conventional methods of pathway analysis. Some of them have been widely recognized in biological literature.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Teorema de Bayes , Estudos de Coortes , Perfilação da Expressão Gênica/métodos , Humanos , Distribuição Normal
4.
J Pediatr ; 260: 113468, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37182662

RESUMO

OBJECTIVES: To predict behavioral disruptions in middle childhood, we identified latent classes of prenatal substance use. STUDY DESIGN: As part of the Environmental influences on Child Health Outcomes Program, we harmonized prenatal substance use data and child behavior outcomes from 2195 women and their 6- to 11-year-old children across 10 cohorts in the US and used latent class-adjusted regression models to predict parent-rated child behavior. RESULTS: Three latent classes fit the data: low use (90.5%; n = 1986), primarily using no substances; licit use (6.6%; n = 145), mainly using nicotine with a moderate likelihood of using alcohol and marijuana; and illicit use (2.9%; n = 64), predominantly using illicit substances along with a moderate likelihood of using licit substances. Children exposed to primarily licit substances in utero had greater levels of externalizing behavior than children exposed to low or no substances (P = .001, d = .64). Children exposed to illicit substances in utero showed small but significant elevations in internalizing behavior than children exposed to low or no substances (P < .001, d = .16). CONCLUSIONS: The differences in prenatal polysubstance use may increase risk for specific childhood problem behaviors; however, child outcomes appeared comparably adverse for both licit and illicit polysubstance exposure. We highlight the need for similar multicohort, large-scale studies to examine childhood outcomes based on prenatal substance use profiles.


Assuntos
Transtornos do Comportamento Infantil , Efeitos Tardios da Exposição Pré-Natal , Comportamento Problema , Transtornos Relacionados ao Uso de Substâncias , Gravidez , Humanos , Criança , Feminino , Análise de Classes Latentes , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Comportamento Infantil , Transtornos do Comportamento Infantil/epidemiologia , Transtornos do Comportamento Infantil/etiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia
5.
Pediatr Res ; 93(3): 725-731, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35717483

RESUMO

BACKGROUND: The establishment of the gut microbiome plays a key symbiotic role in the developing immune system; however, its influence on vaccine response is yet uncertain. We prospectively investigated the composition and diversity of the early-life gut microbiome in relation to infant antibody response to two routinely administered vaccines. METHODS: Eighty-three infants enrolled in the New Hampshire Birth Cohort Study were included in the analysis. We collected blood samples at 12 months of age and assayed the isolated serum to quantify total IgG and measured antibody to pneumococcal capsular polysaccharide and tetanus toxoid. Stool samples were collected from infants at 6 weeks of age and sequenced using 16S rRNA, and a subset of 61 samples were sequenced using shotgun metagenomics sequencing. RESULTS: We observed differences in beta diversity for 16S 6-week stool microbiota and pneumococcal and tetanus IgG antibody responses. Metagenomics analyses identified species and metabolic pathways in 6-week stool associated with tetanus antibody response, in particular, negative associations with the relative abundance of Aeriscardovia aeriphila species and positive associations with the relative abundance of species associated with CDP-diacylglycerol biosynthesis pathways. CONCLUSIONS: The early gut microbiome composition may influence an infant's vaccine response. IMPACT: Early intestinal microbiome acquisition plays a critical role in immune maturation and in both adaptive and innate immune response in infancy. We identified associations between early life microbiome composition and response to two routinely administered vaccines-pneumococcal capsular polysaccharide and tetanus toxoid-measured at approximately 1 year of age. Our findings highlight the potential impact of the gut microbiome on infant immune response that may open up opportunities for future interventions.


Assuntos
Microbioma Gastrointestinal , Tétano , Humanos , Lactente , Microbioma Gastrointestinal/genética , Estudos Prospectivos , Estudos de Coortes , RNA Ribossômico 16S/genética , Toxoide Tetânico , Fezes , Imunoglobulina G , Polissacarídeos
6.
Environ Res ; 238(Pt 2): 117234, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793590

RESUMO

Prenatal exposure to metals/metalloids, even at common US population levels, may pose risks to fetal health, and affect children's lung function. Yet, the combined effects of simultaneous prenatal exposures on children's lung function remain largely unexplored. This study analyzed 11 metals (As speciation, Cd, Co, Cu, Mo, Ni, Pb, Sb, Se, Sn, Zn) in maternal urine during weeks 24-28 of gestation and evaluated lung function, including forced vital capacity (FVC) and forced expiratory volume in the first second of expiration (FEV1), in 316 US mother-child pairs at around age 7. We used Bayesian Kernel Machine Regression (BKMR), weighted quantile sum regression (WQSR), and multiple linear regression to examine the association between metal mixture exposure and children's lung function, adjusting for maternal smoking, child age, sex, and height. In BKMR models assessing combined exposure effects, limited evidence of metal non-linearity or interactions was found. Nevertheless, Co, As species, and Pb showed a negative association, while Mo exhibited a positive association with children's FVC and FEV1, with other metals held constant at their medians. The weighted index, from WQSR analysis assessing the cumulative impact of all metals, highlighted prenatal Mo with the highest positive weight, and Co, As, and Sb with the most substantial negative weights on children's FVC and FEV1. Urinary Co and Pb were negatively associated with FVC (ß = -0.09, 95% confidence interval (CI) (-0.18; -0.01) and ß = -0.07, 95% CI (-0.13; 0.00), respectively). Co was also negatively associated with FEV1 (ß = -0.09, 95% CI (-0.18; 0.00). There was a negative association between As and FVC, and a positive association between Mo and both FVC and FEV1, though with wide confidence intervals. Our findings suggest that prenatal trace element exposures may impact children's lung function, emphasizing the importance of reducing toxic exposures and maintaining adequate nutrient levels.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Humanos , Criança , Estudos de Coortes , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , New Hampshire , Teorema de Bayes , Chumbo , Pulmão
7.
Pediatr Res ; 92(2): 580-591, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34732816

RESUMO

BACKGROUND: A link between the gut microbiome and behavior is hypothesized, but most previous studies are cross-sectional or in animal models. The modifying role of host sex is poorly characterized. We aimed to identify sex-specific prospective associations between the early-life gut microbiome and preschool-age neurobehavior. METHODS: In a prospective cohort, gut microbiome diversity and taxa were estimated with 16S rRNA sequencing at 6 weeks, 1 year, and 2 years. Species and gene pathways were inferred from metagenomic sequencing at 6 weeks and 1 year. When subjects were 3 years old, parents completed the Behavioral Assessment System for Children, second edition (BASC-2). A total of 260 children contributed 523 16S rRNA and 234 metagenomics samples to analysis. Models adjusted for sociodemographic characteristics. RESULTS: Higher diversity at 6 weeks was associated with better internalizing problems among boys, but not girls [ßBoys = -1.86 points/SD Shannon diversity; 95% CI (-3.29, -0.42), pBoys = 0.01, ßGirls = 0.22 (-1.43, 1.87), pGirls = 0.8, pinteraction = 0.06]. Among other taxa-specific associations, Bifidobacterium at 6 weeks was associated with Adaptive Skills scores in a sex-specific manner. We observed relationships between functional features and BASC-2 scores, including vitamin B6 biosynthesis pathways and better Depression scores. CONCLUSIONS: This study advances our understanding of microbe-host interactions with implications for childhood behavioral health. IMPACT: This is one of the first studies to examine the early-life microbiome and neurobehavior, and the first to examine prospective sex-specific associations. Infant and early-childhood microbiomes relate to neurobehavior including anxiety, depression, hyperactivity, and social behaviors in a time- and sex-specific manner. Our findings suggest future studies should evaluate whether host sex impacts the relationship between the gut microbiome and behavioral health outcomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , RNA Ribossômico 16S/genética , Vitamina B 6
8.
Pediatr Res ; 92(6): 1757-1766, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35568730

RESUMO

BACKGROUND: Young children are frequently exposed to antibiotics, with the potential for collateral consequences to the gut microbiome. The impact of antibiotic exposures to off-target microbes (i.e., bacteria not targeted by treatment) and antibiotic resistance genes (ARGs) is poorly understood. METHODS: We used metagenomic sequencing data from paired stool samples collected prior to antibiotic exposure and at 1 year from over 200 infants and a difference-in-differences approach to assess the relationship between subsequent exposures and the abundance or compositional diversity of microbes and ARGs while adjusting for covariates. RESULTS: By 1 year, the abundance of multiple species and ARGs differed by antibiotic exposure. Compared to infants never exposed to antibiotics, Bacteroides vulgatus relative abundance increased by 1.72% (95% CI: 0.19, 3.24) while Bacteroides fragilis decreased by 1.56% (95% CI: -4.32, 1.21). Bifidobacterium species also exhibited opposing trends. ARGs associated with exposure included class A beta-lactamase gene CfxA6. Among infants attending day care, Escherichia coli and ARG abundance were both positively associated with antibiotic use. CONCLUSION: Novel findings, including the importance of day care attendance, were identified through considering microbiome data at baseline and post-intervention. Thus, our study design and approach have important implications for future studies evaluating the unintended impacts of antibiotics. IMPACT: The impact of antibiotic exposure to off-target microbes and antibiotic resistance genes in the gut is poorly defined. We quantified these impacts in two cohort studies using a difference-in-differences approach. Novel to microbiome studies, we used pre/post-antibiotic data to emulate a randomized controlled trial. Compared to infants unexposed to antibiotics between baseline and 1 year, the relative abundance of multiple off-target species and antibiotic resistance genes was altered. Infants who attended day care and were exposed to antibiotics within the first year had a higher abundance of Escherichia coli and antibiotic resistance genes; a novel finding warranting further investigation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Criança , Humanos , Lactente , Pré-Escolar , Antibacterianos/efeitos adversos , Microbioma Gastrointestinal/genética , Estudos de Coortes , Escherichia coli
9.
Environ Res ; 214(Pt 4): 114099, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35998698

RESUMO

Gut bacteria are at the interface of environmental exposures and their impact on human systems, and may alter host absorption, metabolism, and excretion of toxic chemicals. We investigated whether arsenic-metabolizing bacterial gene pathways related to urinary arsenic concentrations. In the New Hampshire Birth Cohort Study, urine and stool samples were obtained at six weeks (n = 186) and one year (n = 190) of age. Inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and arsenobetaine (AsB) were quantified in infant urine samples using high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Total arsenic exposure (tAs) was summarized as Σ(iAs, MMA, DMA) and log2-transformed. Fecal microbial DNA underwent metagenomic sequencing and the relative abundance of bacterial gene pathways were grouped as KEGG Orthologies (KOs) using BioBakery algorithms. Arsenic metabolism KOs with >80% prevalence were log2-transformed and modeled continuously using linear regression, those with <10% were not evaluated and those with 10-80% prevalence were analyzed dichotomously (detect/non-detect) using logistic regression. In the first set of models, tAs was regressed against KO relative abundance or detection adjusting for age at sample collection and child's sex. Effect modification by delivery mode was assessed in stratified models. In the second set of models, the association between the relative abundance/detection of the KOs and arsenic speciation (%iAs, %MMA, %DMA) was quantified with linear regression. Urinary tAs was associated with the increased relative abundance/detection odds of several arsenic-related KOs, including K16509, an arsenate reductase transcriptional regulator, with stronger associations among six-week-olds than one-year-olds. K16509 was also associated with decreased %MMA and increased %DMA at six weeks and one year. Notably, many associations were stronger among operatively-delivered than vaginally-delivered infants. Our findings suggest associations between arsenic-metabolizing bacteria in the infant gut microbiome and urinary arsenic excretion.


Assuntos
Arsênio , Arsenicais , Arsênio/análise , Arsenicais/análise , Bactérias/genética , Bactérias/metabolismo , Coorte de Nascimento , Ácido Cacodílico/urina , Criança , Estudos de Coortes , Humanos , Estudos Prospectivos
10.
BMC Microbiol ; 21(1): 201, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215179

RESUMO

BACKGROUND: The human gut microbiome harbors a collection of bacterial antimicrobial resistance genes (ARGs) known as the resistome. The factors associated with establishment of the resistome in early life are not well understood. We investigated the early-life exposures and taxonomic signatures associated with resistome development over the first year of life in a large, prospective cohort in the United States. Shotgun metagenomic sequencing was used to profile both microbial composition and ARGs in stool samples collected at 6 weeks and 1 year of age from infants enrolled in the New Hampshire Birth Cohort Study. Negative binomial regression and statistical modeling were used to examine infant factors such as sex, delivery mode, feeding method, gestational age, antibiotic exposure, and infant gut microbiome composition in relation to the diversity and relative abundance of ARGs. RESULTS: Metagenomic sequencing was performed on paired samples from 195 full term (at least 37 weeks' gestation) and 15 late preterm (33-36 weeks' gestation) infants. 6-week samples compared to 1-year samples had 4.37 times (95% CI: 3.54-5.39) the rate of harboring ARGs. The majority of ARGs that were at a greater relative abundance at 6 weeks (chi-squared p < 0.01) worked through the mechanism of antibiotic efflux. The overall relative abundance of the resistome was strongly correlated with Proteobacteria (Spearman correlation = 78.9%) and specifically Escherichia coli (62.2%) relative abundance in the gut microbiome. Among infant characteristics, delivery mode was most strongly associated with the diversity and relative abundance of ARGs. Infants born via cesarean delivery had a trend towards a higher risk of harboring unique ARGs [relative risk = 1.12 (95% CI: 0.97-1.29)] as well as having an increased risk for overall ARG relative abundance [relative risk = 1.43 (95% CI: 1.12-1.84)] at 1 year compared to infants born vaginally. CONCLUSIONS: Our findings suggest that the developing infant gut resistome may be alterable by early-life exposures. Establishing the extent to which infant characteristics and early-life exposures impact the resistome can ultimately lead to interventions that decrease the transmission of ARGs and thus the risk of antibiotic resistant infections.


Assuntos
Bactérias/classificação , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Escherichia coli/fisiologia , Microbioma Gastrointestinal/genética , Parto Obstétrico/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Fezes/microbiologia , Métodos de Alimentação/estatística & dados numéricos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Metagenômica
11.
BMC Microbiol ; 21(1): 238, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454437

RESUMO

BACKGROUND: The infant intestinal microbiome plays an important role in metabolism and immune development with impacts on lifelong health. The linkage between the taxonomic composition of the microbiome and its metabolic phenotype is undefined and complicated by redundancies in the taxon-function relationship within microbial communities. To inform a more mechanistic understanding of the relationship between the microbiome and health, we performed an integrative statistical and machine learning-based analysis of microbe taxonomic structure and metabolic function in order to characterize the taxa-function relationship in early life. RESULTS: Stool samples collected from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) at approximately 6-weeks (n = 158) and 12-months (n = 282) of age were profiled using targeted and untargeted nuclear magnetic resonance (NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region from the bacterial 16S rRNA gene. There was significant inter-omic concordance based on Procrustes analysis (6 weeks: p = 0.056; 12 months: p = 0.001), however this association was no longer significant when accounting for phylogenetic relationships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p = 0.069). Sparse canonical correlation analysis showed significant correlation, as well as identifying sets of microbe/metabolites driving microbiome-metabolome relatedness. Performance of machine learning models varied across different metabolites, with support vector machines (radial basis function kernel) being the consistently top ranked model. However, predictive R2 values demonstrated poor predictive performance across all models assessed (avg: - 5.06% -- 6 weeks; - 3.7% -- 12 months). Conversely, the Spearman correlation metric was higher (avg: 0.344-6 weeks; 0.265-12 months). This demonstrated that taxonomic relative abundance was not predictive of metabolite concentrations. CONCLUSIONS: Our results suggest a degree of overall association between taxonomic profiles and metabolite concentrations. However, lack of predictive capacity for stool metabolic signatures reflects, in part, the possible role of functional redundancy in defining the taxa-function relationship in early life as well as the bidirectional nature of the microbiome-metabolome association. Our results provide evidence in favor of a multi-omic approach for microbiome studies, especially those focused on health outcomes.


Assuntos
Bactérias/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Metaboloma , Bactérias/classificação , Bactérias/isolamento & purificação , Coorte de Nascimento , Feminino , Humanos , Lactente , Aprendizado de Máquina , Masculino , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Int J Obes (Lond) ; 44(1): 23-32, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30765892

RESUMO

BACKGROUND: Mother-to-newborn transmission of obesity-associated microbiota may be modified by birth mode (vaginal vs. Cesarean delivery). Prospective data to test this hypothesis are still sparse. OBJECTIVE: To examine prospective associations of maternal pre-pregnancy BMI and gestational weight gain with the infant gut microbiome by birth-mode strata. SUBJECTS/METHODS: In 335 mother-infant pairs in the New Hampshire Birth Cohort, we ascertained data from questionnaires and medical records, and generated microbiome data from 6-week-old infants' stool using Illumina 16s rRNA gene sequencing (V4-V5 region). Analyses were stratified by birth mode and conducted before and after adjusting for potential confounders, which included maternal age, education, parity, and Mediterranean diet score. RESULTS: Among 335 mothers, 56% had normal pre-pregnancy BMI ( < 25, referent), 27% were overweight (BMI 25-30), and 18% obese (BMI > 30). Among the 312 mothers with weight gain data, 10% had inadequate weight gain, 30% adequate (referent), and 60% excess. Birth mode modified associations of pre-pregnancy BMI with several genera, including the most abundant genus, Bacteroides (P for interaction = 0.05). In the vaginal-delivery group, maternal overweight or obesity was associated with higher infant gut microbiome diversity and higher relative abundance of 15 operational taxonomic units (OTUs), including overrepresentation of Bacteroides fragilis, Escherichia coli, Veillonella dispar, and OTUs in the genera Staphylococcus and Enterococcus. In the Cesarean-delivered group, there were no significant associations of pre-pregnancy BMI with infant microbiome (alpha) diversity or OTUs. Gestational weight gain was not associated with differential relative abundance of infant gut microbial OTUs or with measures of microbial diversity in infants delivered vaginally or by Cesarean section. CONCLUSIONS: Among vaginally-delivered infants, maternal overweight and obesity was associated with altered infant gut microbiome composition and higher diversity. These associations were not observed in Cesarean-delivered infants, whose microbiome development differs from vaginally-delivered infants. Our study provides additional evidence of birth-mode dependent associations of maternal body weight status with the infant gut microbiota. The role of these associations in mediating the intergenerational cycle of obesity warrants further examination.


Assuntos
Parto Obstétrico/estatística & dados numéricos , Microbioma Gastrointestinal/genética , Ganho de Peso na Gestação/fisiologia , Gravidez/estatística & dados numéricos , Adulto , Bactérias/classificação , Bactérias/genética , Índice de Massa Corporal , Peso Corporal/fisiologia , Fezes/microbiologia , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos
13.
J Bacteriol ; 201(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31209076

RESUMO

Previous work from our group indicated an association between the gastrointestinal microbiota of infants with cystic fibrosis (CF) and airway disease in this population. Here we report that stool microbiota of infants with CF demonstrates an altered but largely unchanging within-individual bacterial diversity (alpha diversity) over the first year of life, in contrast to the infants without CF (control cohort), which showed the expected increase in alpha diversity over the first year. The beta diversity, or between-sample diversity, of these two cohorts was significantly different over the first year of life and was statistically significantly associated with airway exacerbations, confirming our earlier findings. Compared with control infants, infants with CF had reduced levels of Bacteroides, a bacterial genus associated with immune modulation, as early as 6 weeks of life, and this significant reduction of Bacteroides spp. in the cohort with CF persisted over the entire first year of life. Only two other genera were significantly different across the first year of life: Roseburia was significantly reduced and Veillonella was significantly increased. Other genera showed differences between the two cohorts but only at selected time points. In vitro studies demonstrated that exposure of the apical face of polarized intestinal cell lines to Bacteroides species supernatants significantly reduced production of interleukin 8 (IL-8), suggesting a mechanism whereby changes in the intestinal microbiota could impact inflammation in CF. This work further establishes an association between gastrointestinal microbiota, inflammation, and airway disease in infants with CF and presents a potential opportunity for therapeutic interventions beginning in early life.IMPORTANCE There is growing evidence for a link between gastrointestinal bacterial communities and airway disease progression in CF. We demonstrate that infants with CF ≤1 year of age show a distinct stool microbiota versus that of control infants of a comparable age. We detected associations between the gut microbiome and airway exacerbation events in the cohort of infants with CF, and in vitro studies provided one possible mechanism for this observation. These data clarify that current therapeutics do not establish in infants with CF a gastrointestinal microbiota like that in healthy infants, and we suggest that interventions that direct the gastrointestinal microbiota closer to a healthy state may provide systemic benefits to these patients during a critical window of immune programming that might have implications for lifelong health.


Assuntos
Bactérias/isolamento & purificação , Fibrose Cística/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Bacteroides/isolamento & purificação , Estudos de Coortes , Fibrose Cística/imunologia , Feminino , Humanos , Lactente , Masculino , Sistema Respiratório/imunologia
14.
Environ Res ; 171: 523-529, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30743244

RESUMO

BACKGROUND: Mechanistic studies support the potential for mercury (Hg) to alter immunity, including via in utero exposure. As yet, there are few prospective studies of in utero Hg exposure and subsequent immune-related outcomes, especially in infancy. OBJECTIVES: We investigated the association of biomarkers of prenatal Hg exposure and maternal silver-mercury dental amalgams with the occurrence of infant allergy, respiratory infection, and respiratory symptoms in the first year of life. METHODS: The New Hampshire Birth Cohort Study (NHBCS) ascertained information on infant allergies, infections and symptoms through telephone interviews at 4, 8 and 12 months postpartum and measured total Hg in maternal toenails collected at ~28-30 weeks gestation. Information on maternal fish consumption and presence of dental amalgams was obtained from a questionnaire administered at study enrollment at 24-28 weeks. A total of 1321 NHBCS mother-infant pairs had at least one Hg exposure measure (toenail Hg or information on dental amalgams) and information on dietary fish intake. Generalized linear models and generalized estimating equation models with Poisson regression adjusted for potential confounders (maternal age, level of education, parity, smoking, alternative Healthy Eating Index-2010, infant sex, gestational age, feeding mode, and day care attendance) were used to assess the association between infant outcomes and prenatal toenail Hg levels. We subsetted this analysis on mothers who consumed fish (n = 706) as a measure of in utero methylmercury (MeHg) exposure. Associations between infant outcomes and dental amalgams as a measure of in utero inorganic Hg exposure were assessed among mothers who did not consume fish (n = 218). RESULTS: Among women who ate fish during pregnancy, higher maternal toenail Hg concentrations were associated with an increased risk of lower respiratory infections and respiratory symptoms requiring a doctor visit among infants age 9-12 months (relative risk (RR) 1.4 (95% CI: 1.1, 1.9) and 1.2 (95% CI: 1.0, 1.4) respectively), whereas a reduced risk of lower respiratory infections was observed among infants 0-4 months of age (RR = 0.7 (95% CI: 0.5, 1.0). We found little to no evidence of associations of toenail Hg with upper respiratory infections, allergy or eczema at any age to one year. Among infants of mothers who did not consume fish, we found an elevated risk of upper respiratory infections requiring a doctor visit in relation to having dental amalgams during pregnancy (RR = 1.5 (95% CI: 1.1, 2.1)). Overall, weaker associations were observed with lower respiratory infections, respiratory symptoms, and medically confirmed allergies, and there was no association with eczema. CONCLUSIONS: Our analyses of a US birth cohort, along with prior mechanistic work, raise the possibility that gestational Hg exposure through fish/seafood consumption and dental amalgams may alter respiratory infections and respiratory symptoms in infants.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Mercúrio , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Doenças Respiratórias/epidemiologia , Animais , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , New Hampshire/epidemiologia , Gravidez , Estudos Prospectivos
16.
Pediatr Res ; 84(1): 71-79, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29795209

RESUMO

BACKGROUND: The impact of degree of prematurity at birth on premature infant gut microbiota has not been extensively studied in comparison to term infants in large cohorts. METHODS: To determine the effect of gestational age at birth and postnatal exposures on gut bacterial colonization in infants, we analyzed 65 stool samples from 17 premature infants in the neonatal intensive care unit, as well as 13 samples from 13 mostly moderate-to-late premature infants and 189 samples from 176 term infants in the New Hampshire Birth Cohort Study. Gut colonization patterns were determined with 16S rDNA microbiome profiling. RESULTS: Gut bacterial alpha-diversity differed between premature and term infants at 6 weeks of age, after adjusting for exposures (p = 0.027). Alpha-diversity varied between extremely premature (<28 weeks gestation) and very premature infants (≥28 but <32 weeks, p = 0.011), as well as between extremely and moderate-to-late premature infants (≥32 and <37 weeks, p = 0.004). Newborn antibiotic use among premature infants was associated with lower Bifidobacterium and Bacteroides abundance (p = 0.015 and p = 0.041). CONCLUSION: Gestational age at birth and early antibiotic exposure have significant effects on the premature infant gut microbiota.


Assuntos
Microbioma Gastrointestinal , Idade Gestacional , Recém-Nascido Prematuro , Bactérias/classificação , Análise por Conglomerados , DNA Ribossômico/metabolismo , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Terapia Intensiva Neonatal , Estudos Longitudinais , Filogenia , Gravidez , RNA Ribossômico 16S/genética
17.
J Pediatr ; 167(1): 138-47.e1-3, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25818499

RESUMO

OBJECTIVE: To examine patterns of microbial colonization of the respiratory and intestinal tracts in early life in infants with cystic fibrosis (CF) and their associations with breastfeeding and clinical outcomes. STUDY DESIGN: A comprehensive, prospective longitudinal analysis of the upper respiratory and intestinal microbiota in a cohort of infants and young children with CF followed from birth was performed. Genus-level microbial community composition was characterized using 16S-targeted pyrosequencing, and relationships with exposures and outcomes were assessed using linear mixed-effects models, time-to-event analysis, and principal components analysis. RESULTS: Sequencing of 120 samples from 13 subjects collected from birth to 34 months revealed relationships between breastfeeding, microbial diversity in the respiratory and intestinal tracts, and the timing of onset of respiratory complications, including exacerbations and colonization with Pseudomonas aeruginosa. Fluctuations in the abundance of specific bacterial taxa preceded clinical outcomes, including a significant decrease in bacteria of the genus Parabacteroides within the intestinal tract prior to the onset of chronic P aeruginosa colonization. Specific assemblages of bacteria in intestinal samples, but not respiratory samples, were associated with CF exacerbation in early life, indicating that the intestinal microbiome may play a role in lung health. CONCLUSIONS: Our findings relating breastfeeding to respiratory outcomes, gut diversity to prolonged periods of health, and specific bacterial communities in the gut prior to respiratory complications in CF highlight a connection between the intestinal microbiome and health and point to potential opportunities for antibiotic or probiotic interventions. Further studies in larger cohorts validating these findings are needed.


Assuntos
Fibrose Cística/microbiologia , Intestinos/microbiologia , Microbiota , Sistema Respiratório/microbiologia , Aleitamento Materno , Pré-Escolar , Progressão da Doença , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Estudos Prospectivos , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa
18.
Artigo em Inglês | MEDLINE | ID: mdl-38851487

RESUMO

Neuropsychiatric symptoms have long been acknowledged as a common comorbidity for individuals with allergic diseases. The proposed mechanisms for this relationship vary by disease and patient population and may include neuroinflammation and/or the consequent social implications of disease symptoms and management. We review connections between mental health and allergic rhinitis, atopic dermatitis, asthma, vocal cord dysfunction, urticaria, and food allergy. Many uncertainties remain and warrant further research, particularly with regard to how medications interact with pathophysiologic mechanisms of allergic disease in the neuroimmune axis. Proactive screening for mental health challenges, using tools such as the Patient Health Questionnaire and Generalized Anxiety Disorder screening instruments among others, can aid clinicians in identifying patients who may need further psychiatric evaluation and support. Although convenient, symptom screening tools are limited by variable sensitivity and specificity and therefore require healthcare professionals to remain vigilant for other mental health "red flags." Ultimately, understanding the connection between allergic disease and mental health empowers clinicians to both anticipate and serve the diverse physical and mental health needs of their patient populations.

19.
J Allergy Clin Immunol Pract ; 12(7): 1738-1750, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38499084

RESUMO

Allergist-immunologists face significant challenges as experts in an ever-evolving field of neuroimmunology. Among these challenges is the increasingly frequent need to counsel patients with suspected mast cell activation disorders about perceived comorbidities, which may include hypermobile Ehlers-Danlos syndrome, amplified pain syndrome, fibromyalgia, burning sensation syndromes, migraines, irritable bowel syndrome, and postural orthostatic tachycardia syndrome. Patients may experience comorbid anxiety, panic disorder, and depression associated with disturbed sleep, fatigue, and cognitive impairment that often worsen when their physical symptoms increase in severity. These conditions may mimic mast cell activation disorders and are emotionally taxing for patients and clinicians because they are often accompanied by vague diagnostic courses, perceived unmanageability, social stigma, and significant impairment in quality of life. Combined with relatively poorly researched therapies, it is no surprise that clinicians may feel overwhelmed or find it difficult to provide consistently compassionate care for this population. In this article, we review available therapies for these conditions, which run the gamut from physical therapy to antidepressants to multimodal pain control. We highlight the benefit of multidisciplinary care within the primary care home, which includes an important role by the allergist-immunologist. By outlining simple approaches to initial treatment, we hope to empower clinicians with the tools needed to curb emotional burnout and embrace this patient population with compassion.


Assuntos
Disautonomias Primárias , Humanos , Mastócitos/imunologia , Mastocitose , Comorbidade
20.
Mol Autism ; 15(1): 21, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760865

RESUMO

BACKGROUND: Identifying modifiable risk factors of autism spectrum disorders (ASDs) may inform interventions to reduce financial burden. The infant/toddler gut microbiome is one such feature that has been associated with social behaviors, but results vary between cohorts. We aimed to identify consistent overall and sex-specific associations between the early-life gut microbiome and autism-related behaviors. METHODS: Utilizing the Environmental influences on Children Health Outcomes (ECHO) consortium of United States (U.S.) pediatric cohorts, we gathered data on 304 participants with fecal metagenomic sequencing between 6-weeks to 2-years postpartum (481 samples). ASD-related social development was assessed with the Social Responsiveness Scale (SRS-2). Linear regression, PERMANOVA, and Microbiome Multivariable Association with Linear Models (MaAsLin2) were adjusted for sociodemographic factors. Stratified models estimated sex-specific effects. RESULTS: Genes encoding pathways for synthesis of short-chain fatty acids were associated with higher SRS-2 scores, indicative of ASDs. Fecal concentrations of butyrate were also positively associated with ASD-related SRS-2 scores, some of which may be explained by formula use. LIMITATIONS: The distribution of age at outcome assessment differed in the cohorts included, potentially limiting comparability between cohorts. Stool sample collection methods also differed between cohorts. Our study population reflects the general U.S. population, and thus includes few participants who met the criteria for being at high risk of developing ASD. CONCLUSIONS: Our study is among the first multicenter studies in the U.S. to describe prospective microbiome development from infancy in relation to neurodevelopment associated with ASDs. Our work contributes to clarifying which microbial features associate with subsequent diagnosis of neuropsychiatric outcomes. This will allow for future interventional research targeting the microbiome to change neurodevelopmental trajectories.


Assuntos
Fezes , Microbioma Gastrointestinal , Comportamento Social , Humanos , Feminino , Masculino , Lactente , Fezes/microbiologia , Estudos Prospectivos , Pré-Escolar , Transtorno do Espectro Autista/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA