Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 15(5): 529-34, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26779882

RESUMO

Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum ß-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.


Assuntos
Antibacterianos , Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Pontos Quânticos/química , Antibacterianos/química , Antibacterianos/farmacologia , Oxirredução/efeitos dos fármacos
2.
N Engl J Med ; 365(8): 689-98, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21864166

RESUMO

BACKGROUND: Acute exacerbations adversely affect patients with chronic obstructive pulmonary disease (COPD). Macrolide antibiotics benefit patients with a variety of inflammatory airway diseases. METHODS: We performed a randomized trial to determine whether azithromycin decreased the frequency of exacerbations in participants with COPD who had an increased risk of exacerbations but no hearing impairment, resting tachycardia, or apparent risk of prolongation of the corrected QT interval. RESULTS: A total of 1577 subjects were screened; 1142 (72%) were randomly assigned to receive azithromycin, at a dose of 250 mg daily (570 participants), or placebo (572 participants) for 1 year in addition to their usual care. The rate of 1-year follow-up was 89% in the azithromycin group and 90% in the placebo group. The median time to the first exacerbation was 266 days (95% confidence interval [CI], 227 to 313) among participants receiving azithromycin, as compared with 174 days (95% CI, 143 to 215) among participants receiving placebo (P<0.001). The frequency of exacerbations was 1.48 exacerbations per patient-year in the azithromycin group, as compared with 1.83 per patient-year in the placebo group (P=0.01), and the hazard ratio for having an acute exacerbation of COPD per patient-year in the azithromycin group was 0.73 (95% CI, 0.63 to 0.84; P<0.001). The scores on the St. George's Respiratory Questionnaire (on a scale of 0 to 100, with lower scores indicating better functioning) improved more in the azithromycin group than in the placebo group (a mean [±SD] decrease of 2.8±12.8 vs. 0.6±11.4, P=0.004); the percentage of participants with more than the minimal clinically important difference of -4 units was 43% in the azithromycin group, as compared with 36% in the placebo group (P=0.03). Hearing decrements were more common in the azithromycin group than in the placebo group (25% vs. 20%, P=0.04). CONCLUSIONS: Among selected subjects with COPD, azithromycin taken daily for 1 year, when added to usual treatment, decreased the frequency of exacerbations and improved quality of life but caused hearing decrements in a small percentage of subjects. Although this intervention could change microbial resistance patterns, the effect of this change is not known. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00325897.).


Assuntos
Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Idoso , Antibacterianos/efeitos adversos , Azitromicina/efeitos adversos , Infecções Bacterianas/prevenção & controle , Farmacorresistência Bacteriana , Feminino , Humanos , Macrolídeos/uso terapêutico , Masculino , Pessoa de Meia-Idade , Nasofaringe/microbiologia , Estudos Prospectivos , Resultado do Tratamento
3.
Commun Biol ; 4(1): 331, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712689

RESUMO

Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. To address this, we have developed a Facile Accelerated Specific Therapeutic (FAST) platform that can develop effective peptide nucleic acid (PNA) therapies against MDR bacteria within a week. Our FAST platform uses a bioinformatics toolbox to design sequence-specific PNAs targeting non-traditional pathways/genes of bacteria, then performs in-situ synthesis, validation, and efficacy testing of selected PNAs. As a proof of concept, these PNAs were tested against five MDR clinical isolates: carbapenem-resistant Escherichia coli, extended-spectrum beta-lactamase Klebsiella pneumoniae, New Delhi Metallo-beta-lactamase-1 carrying Klebsiella pneumoniae, and MDR Salmonella enterica. PNAs showed significant growth inhibition for 82% of treatments, with nearly 18% of treatments leading to greater than 97% decrease. Further, these PNAs are capable of potentiating antibiotic activity in the clinical isolates despite presence of cognate resistance genes. Finally, the FAST platform offers a novel delivery approach to overcome limited transport of PNAs into mammalian cells by repurposing the bacterial Type III secretion system in conjunction with a kill switch that is effective at eliminating 99.6% of an intracellular Salmonella infection in human epithelial cells.


Assuntos
Antibacterianos/farmacologia , Biologia Computacional , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae/tratamento farmacológico , Enterobacteriaceae/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Ácidos Nucleicos Peptídicos/farmacologia , Células 3T3 , Animais , Farmacorresistência Bacteriana Múltipla/genética , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Infecções por Enterobacteriaceae/microbiologia , Células HeLa , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estudo de Prova de Conceito , Células RAW 264.7
4.
Genome Announc ; 5(5)2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153899

RESUMO

We report here the draft genome sequences of two clinically isolated Acinetobacter baumannii strains. These samples were obtained from patients at the University of Colorado Hospital in 2007 and 2013 and encode an estimated 20 and 13 resistance genes, respectively.

5.
Sci Adv ; 3(10): e1701776, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28983513

RESUMO

The rise of multidrug-resistant (MDR) bacteria is a growing concern to global health and is exacerbated by the lack of new antibiotics. To treat already pervasive MDR infections, new classes of antibiotics or antibiotic adjuvants are needed. Reactive oxygen species (ROS) have been shown to play a role during antibacterial action; however, it is not yet understood whether ROS contribute directly to or are an outcome of bacterial lethality caused by antibiotics. We show that a light-activated nanoparticle, designed to produce tunable flux of specific ROS, superoxide, potentiates the activity of antibiotics in clinical MDR isolates of Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Despite the high degree of antibiotic resistance in these isolates, we observed a synergistic interaction between both bactericidal and bacteriostatic antibiotics with varied mechanisms of action and our superoxide-producing nanoparticles in more than 75% of combinations. As a result of this potentiation, the effective antibiotic concentration of the clinical isolates was reduced up to 1000-fold below their respective sensitive/resistant breakpoint. Further, superoxide-generating nanoparticles in combination with ciprofloxacin reduced bacterial load in epithelial cells infected with S. enterica serovar Typhimurium and increased Caenorhabditis elegans survival upon infection with S. enterica serovar Enteriditis, compared to antibiotic alone. This demonstration highlights the ability to engineer superoxide generation to potentiate antibiotic activity and combat highly drug-resistant bacterial pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Superóxidos/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Caenorhabditis elegans , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nanopartículas , Oxirredução
6.
Genome Announc ; 4(3)2016 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27340066

RESUMO

We report here the draft genome sequence of a multidrug-resistant Enterococcus faecalis strain, isolated from a patient at the University of Colorado Hospital. The genome assembly is 3,040,186 bp in length with 37.6% GC content. This isolate encodes eleven resistance genes, including those for glycopeptide, aminoglycoside, macrolide-lincosamide-streptogramin, and tetracycline resistance.

7.
Infect Control Hosp Epidemiol ; 30(3): 233-41, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19199535

RESUMO

OBJECTIVE: To describe the epidemiology of bloodstream infection caused by USA300 strains of methicillin-resistant Staphylococcus aureus (MRSA), which are traditionally associated with cases of community-acquired infection, in the healthcare setting. DESIGN: Retrospective cohort study. SETTING: Three academically affiliated hospitals in Denver, Colorado. METHODS: Review of cases of S. aureus bloodstream infection during the period from 2003 through 2007. Polymerase chain reaction was used to identify MRSA USA300 isolates. RESULTS: A total of 330 cases of MRSA bloodstream infection occurred during the study period, of which 286 (87%) were healthcare-associated. The rates of methicillin resistance among the S. aureus isolates recovered did not vary during the study period and were similar among the 3 hospitals. However, the percentages of cases of healthcare-associated MRSA bloodstream infection due to USA300 strains varied substantially among the 3 hospitals: 62%, 19%, and 36% (P<.001) for community-onset cases and 33%, 3%, and 33% (P=.005) for hospital-onset cases, in hospitals A, B, and C, respectively. In addition, the number of cases of healthcare-associated MRSA bloodstream infection caused by USA300 strains increased during the study period at 2 of the 3 hospitals. At each hospital, USA300 strains were most common among cases of community-associated infection and were least common among cases of hospital-onset infection. Admission to hospital A (a safety-net hospital), injection drug use, and human immunodeficiency virus infection were independent risk factors for healthcare-associated MRSA bloodstream infection due to USA300 strains. CONCLUSIONS: The prevalence of USA300 strains among cases of healthcare-associated MRSA bloodstream infection varied dramatically among geographically clustered hospitals. USA300 strains are replacing traditional healthcare-related strains of MRSA in some healthcare settings. Our data suggest that the prevalence of USA300 strains in the community is the dominant factor affecting the prevalence of this strain type in the healthcare setting.


Assuntos
Bacteriemia/epidemiologia , Infecção Hospitalar/epidemiologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/epidemiologia , Bacteriemia/microbiologia , Estudos de Coortes , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/genética , Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/microbiologia , DNA Bacteriano/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Epidemiologia Molecular , Estudos Retrospectivos , Fatores de Risco , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/microbiologia
8.
J Clin Microbiol ; 43(4): 2012-4, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15815047

RESUMO

This case report describes craniofacial zygomycosis in a 24-year-old male with Hodgkin's disease who underwent chemotherapy and autologous hematopoietic stem cell transplantation, followed by a nonmyeloablative allogeneic transplant. Empirical therapy with itraconazole and amoxicillin-clavulanate failed to resolve the infection. Postdiagnosis, surgery and treatment with high-dose liposomal amphotericin B eradicated the disease.


Assuntos
Dor Facial/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Mucormicose , Rhizopus , Sinusite , Transplante Homólogo/efeitos adversos , Adulto , Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Doença de Hodgkin/terapia , Humanos , Lipossomos/uso terapêutico , Masculino , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Mucormicose/cirurgia , Rhizopus/classificação , Rhizopus/isolamento & purificação , Sinusite/tratamento farmacológico , Sinusite/microbiologia , Sinusite/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA