Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 91(5): 912-8, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23084291

RESUMO

Multiple-respiratory-chain deficiency represents an important cause of mitochondrial disorders. Hitherto, however, mutations in genes involved in mtDNA maintenance and translation machinery only account for a fraction of cases. Exome sequencing in two siblings, born to consanguineous parents, with severe encephalomyopathy, choreoathetotic movements, and combined respiratory-chain defects allowed us to identify a homozygous PNPT1 missense mutation (c.1160A>G) that encodes the mitochondrial polynucleotide phosphorylase (PNPase). Blue-native polyacrylamide gel electrophoresis showed that no PNPase complex could be detected in subject fibroblasts, confirming that the substitution encoded by c.1160A>G disrupts the trimerization of the protein. PNPase is predominantly localized in the mitochondrial intermembrane space and is implicated in RNA targeting to human mitochondria. Mammalian mitochondria import several small noncoding nuclear RNAs (5S rRNA, MRP RNA, some tRNAs, and miRNAs). By RNA hybridization experiments, we observed a significant decrease in 5S rRNA and MRP-related RNA import into mitochondria in fibroblasts of affected subject 1. Moreover, we found a reproducible decrease in the rate of mitochondrial translation in her fibroblasts. Finally, overexpression of the wild-type PNPT1 cDNA in fibroblasts of subject 1 induced an increase in 5S rRNA import in mitochondria and rescued the mitochondrial-translation deficiency. In conclusion, we report here abnormal RNA import into mitochondria as a cause of respiratory-chain deficiency.


Assuntos
DNA Mitocondrial/genética , Exorribonucleases/genética , Doenças Mitocondriais/genética , Mutação , Transporte de RNA/genética , Adolescente , Encéfalo/patologia , Pré-Escolar , Éxons , Exorribonucleases/metabolismo , Feminino , Células Hep G2 , Humanos , Imageamento por Ressonância Magnética , Masculino , Doenças Mitocondriais/diagnóstico , Interferência de RNA , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo
2.
Nucleic Acids Res ; 39(18): 8173-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21724600

RESUMO

Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.


Assuntos
Genes Mitocondriais , Síndrome MELAS/genética , Mutação Puntual , RNA de Transferência de Leucina/genética , Aminoacilação , Sequência de Bases , Linhagem Celular , Respiração Celular , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Biossíntese de Proteínas , Transporte de RNA , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/metabolismo , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/metabolismo
3.
Am J Hum Genet ; 85(3): 401-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19732863

RESUMO

Acute liver failure in infancy accompanied by lactic acidemia was previously shown to result from mtDNA depletion. We report on 13 unrelated infants who presented with acute liver failure and lactic acidemia with normal mtDNA content. Four died during the acute episodes, and the survivors never had a recurrence. The longest follow-up period was 14 years. Using homozygosity mapping, we identified mutations in the TRMU gene, which encodes a mitochondria-specific tRNA-modifying enzyme, tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase. Accordingly, the 2-thiouridylation levels of the mitochondrial tRNAs were markedly reduced. Given that sulfur is a TRMU substrate and its availability is limited during the neonatal period, we propose that there is a window of time whereby patients with TRMU mutations are at increased risk of developing liver failure.


Assuntos
Falência Hepática Aguda/enzimologia , Falência Hepática Aguda/genética , Proteínas Mitocondriais/genética , Mutação/genética , tRNA Metiltransferases/genética , DNA Mitocondrial/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Genótipo , Humanos , Lactente , Recém-Nascido , Fígado/patologia , Falência Hepática Aguda/patologia , Mitocôndrias/enzimologia , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Compostos de Sulfidrila/metabolismo
4.
J Biol Chem ; 285(40): 30792-803, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20663881

RESUMO

5 S rRNA is an essential component of ribosomes. In eukaryotic cells, it is distinguished by particularly complex intracellular traffic, including nuclear export and re-import. The finding that in mammalian cells 5 S rRNA can eventually escape its usual circuit toward nascent ribosomes to get imported into mitochondria has made the scheme more complex, and it has raised questions about both the mechanism of 5 S rRNA mitochondrial targeting and its function inside the organelle. Previously, we showed that import of 5 S rRNA into mitochondria requires unknown cytosolic proteins. Here, one of them was identified as mitochondrial thiosulfate sulfurtransferase, rhodanese. Rhodanese in its misfolded form was found to possess a strong and specific 5 S rRNA binding activity, exploiting sites found earlier to function as signals of 5 S rRNA mitochondrial localization. The interaction with 5 S rRNA occurs cotranslationally and results in formation of a stable complex in which rhodanese is preserved in a compact enzymatically inactive conformation. Human 5 S rRNA in a branched Mg(2+)-free form, upon its interaction with misfolded rhodanese, demonstrates characteristic functional traits of Hsp40 cochaperones implicated in mitochondrial precursor protein targeting, suggesting that it may use this mechanism to ensure its own mitochondrial localization. Finally, silencing of the rhodanese gene caused not only a proportional decrease of 5 S rRNA import but also a general inhibition of mitochondrial translation, indicating the functional importance of the imported 5 S rRNA inside the organelle.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Ribossômico 5S/metabolismo , Tiossulfato Sulfurtransferase/metabolismo , Animais , Transporte Biológico/fisiologia , Bovinos , Inativação Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Células Hep G2 , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas/fisiologia , RNA Ribossômico 5S/genética , Tiossulfato Sulfurtransferase/genética
5.
RNA ; 14(4): 749-59, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18314502

RESUMO

RNA import into mitochondria is a widespread phenomenon. Studied in details for yeast, protists, and plants, it still awaits thorough investigation for human cells, in which the nuclear DNA-encoded 5S rRNA is imported. Only the general requirements for this pathway have been described, whereas specific protein factors needed for 5S rRNA delivery into mitochondria and its structural determinants of import remain unknown. In this study, a systematic analysis of the possible role of human 5S rRNA structural elements in import was performed. Our experiments in vitro and in vivo show that two distinct regions of the human 5S rRNA molecule are needed for its mitochondrial targeting. One of them is located in the proximal part of the helix I and contains a conserved uncompensated G:U pair. The second and most important one is associated with the loop E-helix IV region with several noncanonical structural features. Destruction or even destabilization of these sites leads to a significant decrease of the 5S rRNA import efficiency. On the contrary, the beta-domain of the 5S rRNA was proven to be dispensable for import, and thus it can be deleted or substituted without affecting the 5S rRNA importability. This finding was used to demonstrate that the 5S rRNA can function as a vector for delivering heterologous RNA sequences into human mitochondria. 5S rRNA-based vectors containing a substitution of a part of the beta-domain by a foreign RNA sequence were shown to be much more efficiently imported in vivo than the wild-type 5S rRNA.


Assuntos
Mitocôndrias/metabolismo , RNA Ribossômico 5S/química , RNA Ribossômico 5S/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Transporte Biológico Ativo , Linhagem Celular , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , RNA/química , RNA/genética , RNA/metabolismo , RNA Ribossômico 5S/genética , Transfecção
6.
Methods Mol Biol ; 372: 235-53, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18314730

RESUMO

Ribonucleic acid (RNA) import into mitochondria occurs in a variety of organisms. In mammalian cells, several small RNAs are imported in a natural manner; transfer RNAs (tRNAs) can be imported in an artificial way, following expression of corresponding genes from another organism (yeast) in the nucleus. We describe how to establish and to analyze such import mechanisms in cultured human cells. In detail, we describe (1) the construction of plasmids expressing importable yeast tRNA derivatives in human cells, (2) the procedure of transfection of either immortalized cybrid cell lines or primary patient's fibroblasts and downregulation of tRNA expression directed by small interfering RNA (siRNA) as a way to demonstrate the effect of import in vivo, (3) the methods of mitochondrial RNA isolation from the transfectants, and (4) approaches for quantification of RNA mitochondrial import.


Assuntos
Mitocôndrias/metabolismo , Biologia Molecular/métodos , Transporte de RNA , RNA de Transferência/metabolismo , Sequência de Bases , Northern Blotting , Precipitação Química , Células HeLa , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA/química , RNA/genética , RNA/isolamento & purificação , RNA Mitocondrial , RNA Interferente Pequeno/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Transfecção
7.
PLoS One ; 7(6): e38071, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723847

RESUMO

The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB) enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1), a WD40 motif-containing protein. Duf1 activates the DUB activity of recombinant Ubp9 and Ubp13 in vitro and deletion of DUF1 resulted in the same respiratory phenotype as the deletion of both UBP9 and UBP13. We show that the mitochondrial defects of these mutants resulted from a strong decrease at 37°C in the de novo biosynthesis of Atp9, a membrane-bound component of ATP synthase encoded by mitochondrial DNA. The defect appears at the level of ATP9 mRNA translation, while its maturation remained unchanged in the mutants. This study describes a new role of the ubiquitin system in mitochondrial biogenesis.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/biossíntese , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Ativação Enzimática , Deleção de Genes , Genótipo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Consumo de Oxigênio/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA