Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mutat ; 33(2): 351-4, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22065524

RESUMO

Autosomal recessive ataxias are heterogeneous group of disorders characterized by cerebellar atrophy and peripheral sensorimotor neuropathy. Molecular characterization of this group of disorders identified a number of genes contributing to these overlapping phenotypes. Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive form of ataxia caused by mutations in the SETX gene. We report on a consanguineous family with autosomal recessive inheritance and clinical characteristics of AOA2, and no mutations in the SETX gene. We mapped the AOA locus in this family to chromosome 17p12-p13. Sequencing of all genes in the refined region identified a homozygous missense mutation in PIK3R5 that was absent in 477 normal controls. Our characterization of the PIK3R5 protein and findings suggest that it may play a role in the development of the cerebellum and vermis.


Assuntos
Apraxias/genética , Ataxia Telangiectasia/genética , Ataxia/genética , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Hipoalbuminemia/genética , Mutação de Sentido Incorreto , Fosfatidilinositol 3-Quinases/genética , Adolescente , Adulto , Animais , Apraxias/diagnóstico , Ataxia/diagnóstico , Ataxia Telangiectasia/diagnóstico , Encéfalo/patologia , Ataxia Cerebelar/congênito , Consanguinidade , DNA Helicases , Feminino , Ordem dos Genes , Ligação Genética , Homozigoto , Humanos , Hipoalbuminemia/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Camundongos , Enzimas Multifuncionais , Linhagem , Fenótipo , RNA Helicases/genética , Relações entre Irmãos , Adulto Jovem
2.
Eur J Hum Genet ; 28(8): 1098-1110, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32238911

RESUMO

Several types of genetic alterations occurring at numerous loci have been described in attention deficit hyperactivity disorder (ADHD). However, the role of rare single nucleotide variants (SNVs) remains under investigated. Here, we sought to identify rare SNVs with predicted deleterious effect that may contribute to ADHD risk. We chose to study ADHD families (including multi-incident) from a population with a high rate of consanguinity in which genetic risk factors tend to accumulate and therefore increasing the chance of detecting risk alleles. We employed whole exome sequencing (WES) to interrogate the entire coding region of 16 trios with ADHD. We also performed enrichment analysis on our final list of genes to identify the overrepresented biological processes. A total of 32 rare variants with predicted damaging effect were identified in 31 genes. At least two variants were detected per proband, most of which were not exclusive to the affected individuals. In addition, the majority of our candidate genes have not been previously described in ADHD including five genes (NEK4, NLE1, PSRC1, PTP4A3, and TMEM183A) that were not previously described in any human condition. Moreover, enrichment analysis highlighted brain-relevant biological themes such as "Glutamatergic synapse", "Cytoskeleton organization", and "Ca2+ pathway". In conclusion, our findings are in keeping with prior studies demonstrating the highly challenging genetic architecture of ADHD involving low penetrance, variable expressivity and locus heterogeneity.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Loci Gênicos , Herança Multifatorial , Adolescente , Adulto , Criança , Exoma , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Proteínas de Membrana/genética , Quinases Relacionadas a NIMA/genética , Proteínas de Neoplasias/genética , Linhagem , Fosfoproteínas/genética , Polimorfismo Genético , Proteínas Tirosina Fosfatases/genética
3.
BMC Res Notes ; 12(1): 225, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987672

RESUMO

OBJECTIVE: Delivery of constructs for silencing or over-expressing genes or their modified versions is a crucial step for studying neuronal cell biology. Therefore, efficient transfection is important for the success of these experimental techniques especially in post-mitotic cells like neurons. In this study, we have assessed the transfection rate, using a previously established protocol, in both primary cortical cultures and neuroblastoma cell lines. Transfection efficiencies in these preparations have not been systematically determined before. RESULTS: Transfection efficiencies obtained herein were (10-12%) for neuroblastoma, (5-12%) for primary astrocytes and (1.3-6%) for primary neurons. We also report on cell-type specific transfection efficiency of neurons and astrocytes within primary cortical cultures when applying cell-type selective transfection protocols. Previous estimations described in primary cortical or hippocampal cultures were either based on general observations or on data derived from unspecified number of biological and/or technical replicates. Also to the best of our knowledge, transfection efficiency of pure primary neuronal cultures or astrocytes cultured in the context of pure or mixed (neurons/astrocytes) population cultures have not been previously determined. The transfection strategy used herein represents a convenient, and a straightforward tool for targeted cell transfection that can be utilized in a variety of in vitro applications.


Assuntos
Astrócitos/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Plasmídeos/metabolismo , Transfecção/métodos , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Expressão Gênica , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lipídeos/química , Lipídeos/farmacologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Especificidade de Órgãos , Plasmídeos/química , Cultura Primária de Células
4.
Oncotarget ; 10(53): 5549-5559, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31565188

RESUMO

Background: With a prevalence of 170 000 adults in the US alone, meningiomas are the most common primary intracranial tumors. The management of skull base meningiomas is challenging due to their complexity and proximity to crucial nearby structures. The identification of oncogenic mutations has provided further insights into the tumorigenesis of meningioma and the possibility of targeted therapy. This study aimed to further investigate the association of mutational profiles with anatomical distribution, histological subtype, WHO grade, and recurrence in patients with meningioma. Methods: Tissue samples were collected from 71 patients diagnosed with meningioma from 2008 to 2016. A total of 51 cases were skull based. Samples were subjected to targeted sequencing using a next generation customized cancer gene panel (n = 66 genes analyzed). Results: We detected genomic alterations (GAs) in 68 tumors, averaging 1.56 ± 1.07 genomic alterations (GAs) per sample. NF2 was the most frequently altered gene (36/71 cases). Interestingly, we identified a number of mutations in non-NF2 genes, including a hotspot TERTp c.-124: G > A mutation that may be related to poor prognosis and FGFR3 mutations that may represent biomarkers of a favorable prognosis as reported in other cancers. Conclusions: We demonstrate that comprehensive genomic profiling in our population can reveal a potential new prognostic biomarkers of skull base meningioma. These mutations can enhance diagnostic accuracy and clinical decision-making. Among our findings were the identification of a TERTp mutation and the first report of FGFR3 mutations that may represent biomarkers for the identification of skull base meningioma patients with a favorable prognosis.

5.
Sci Rep ; 9(1): 3344, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833663

RESUMO

Genetic studies of the familial forms of Parkinson's disease (PD) have identified a number of causative genes with an established role in its pathogenesis. These genes only explain a fraction of the diagnosed cases. The emergence of Next Generation Sequencing (NGS) expanded the scope of rare variants identification in novel PD related genes. In this study we describe whole exome sequencing (WES) genetic findings of 60 PD patients with 125 variants validated in 51 of these cases. We used strict criteria for variant categorization that generated a list of variants in 20 genes. These variants included loss of function and missense changes in 18 genes that were never previously linked to PD (NOTCH4, BCOR, ITM2B, HRH4, CELSR1, SNAP91, FAM174A, BSN, SPG7, MAGI2, HEPHL1, EPRS, PUM1, CLSTN1, PLCB3, CLSTN3, DNAJB9 and NEFH) and 2 genes that were previously associated with PD (EIF4G1 and ATP13A2). These genes either play a critical role in neuronal function and/or have mouse models with disease related phenotypes. We highlight NOTCH4 as an interesting candidate in which we identified a deleterious truncating and a splice variant in 2 patients. Our combined molecular approach provides a comprehensive strategy applicable for complex genetic disorders.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Doença de Parkinson/genética , Éxons , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Deleção de Sequência , Ubiquitina-Proteína Ligases/genética
6.
Sci Rep ; 7(1): 5679, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720891

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with genetic and clinical heterogeneity. The interplay of de novo and inherited rare variants has been suspected in the development of ASD. Here, we applied whole exome sequencing (WES) on 19 trios from singleton Saudi families with ASD. We developed an analysis pipeline that allows capturing both de novo and inherited rare variants predicted to be deleterious. A total of 47 unique rare variants were detected in 17 trios including 38 which are newly discovered. The majority were either autosomal recessive or X-linked. Our pipeline uncovered variants in 15 ASD-candidate genes, including 5 (GLT8D1, HTATSF1, OR6C65, ITIH6 and DDX26B) that have not been reported in any human condition. The remaining variants occurred in genes formerly associated with ASD or other neurological disorders. Examples include SUMF1, KDM5B and MXRA5 (Known-ASD genes), PRODH2 and KCTD21 (implicated in schizophrenia), as well as USP9X and SMS (implicated in intellectual disability). Consistent with expectation and previous studies, most of the genes implicated herein are enriched for biological processes pertaining to neuronal function. Our findings underscore the private and heterogeneous nature of the genetic architecture of ASD even in a population with high consanguinity rates.


Assuntos
Transtorno do Espectro Autista/genética , Sequenciamento do Exoma , Mutação/genética , Consanguinidade , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Transtornos do Neurodesenvolvimento/genética , Arábia Saudita/epidemiologia
7.
PLoS One ; 10(8): e0135950, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26274610

RESUMO

Parkinson's disease (PD) is one of the major causes of parkinsonism syndrome. Its characteristic motor symptoms are attributable to dopaminergic neurons loss in the midbrain. Genetic advances have highlighted underlying molecular mechanisms and provided clues to potential therapies. However, most of the studies focusing on the genetic component of PD have been performed on American, European and Asian populations, whereas Arab populations (excluding North African Arabs), particularly Saudis remain to be explored. Here we investigated the genetic causes of PD in Saudis by recruiting 98 PD-cases (sporadic and familial) and screening them for potential pathogenic mutations in PD-established genes; SNCA, PARKIN, PINK1, PARK7/DJ1, LRRK2 and other PD-associated genes using direct sequencing. To our surprise, the screening revealed only three pathogenic point mutations; two in PINK1 and one in PARKIN. In addition to mutational analysis, CNV and cDNA analysis was performed on a subset of patients. Exon/intron dosage alterations in PARKIN were detected and confirmed in 2 cases. Our study suggests that mutations in the ORF of the screened genes are not a common cause of PD in Saudi population; however, these findings by no means exclude the possibility that other genetic events such as gene expression/dosage alteration may be more common nor does it eliminate the possibility of the involvement of novel genes.


Assuntos
Mutação , Doença de Parkinson/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA