Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(32): 42522-42533, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087921

RESUMO

The wide tunability of the energy bandgap of colloidal lead sulfide (PbS) quantum dots (QDs) has uniquely positioned them for the development of single junction and tandem solar cells. While there have been substantial advancements in moderate and narrow bandgap PbS QDs-ideal for single junction solar cells and the bottom cell in tandem solar cells, respectively; progress has been limited in high-bandgap PbS QDs that are ideally suited for the formation of the top cell in tandem solar cells. The development of appropriate high bandgap PbS QDs would be a major advancement toward realizing efficient all-QD tandem solar cells utilizing different sizes of PbS QDs. Here, we report a comprehensive approach encompassing synthetic strategy, ligand engineering, and hole transport layer (HTL) modification to implement high-bandgap PbS QDs into solar cell devices. We achieved a greater degree of size homogeneity in high-bandgap PbS QDs through the use of a growth retarding agent and a partial passivation strategy. By adjusting the ligand polarity, we successfully grow HTL over the QD film to fabricate solar cells. With the aid of an interface modifying layer, we incorporated an organic HTL for the realization of high-performance solar cells. These solar cells exhibited an impressive open-circuit voltage of 0.824 V and a power conversion efficiency of 10.7%, marking a 360% improvement over previous results.

2.
ACS Appl Mater Interfaces ; 12(44): 49840-49848, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33081466

RESUMO

The broad tunability of the energy band gap through size control makes colloidal quantum dots (QDs) promising for the development of photovoltaic devices. Large-size lead sulfide (PbS) QDs, exhibiting a narrow energy band gap, are particularly interesting as they can be used to augment perovskite and c-Si solar cells due to their complementary NIR absorption. However, their complex surface chemistry makes them difficult to process for the development of solar cells. The shape of the QDs transformed from octahedron to cuboctahedron as their size increases, a phenomenon guided by surface energy minimization. As a result, the surface properties change drastically for large-size QDs, which exhibit nonpolar (200) facets and polar (111) facets, as opposed to only (111) facets in small-size QDs. Recent advancements in solution-phase surface passivation strategies, used for the development of high-performance solar cells using the small size and wide band gap QDs, failed to translate a similar enhancement in the case of large-size and narrow band gap QDs. Here, we report a hybrid passivation strategy for large-size and narrow band gap QDs to passivate both (111) and (200) facets, respectively, using inorganic lead triiodide (PbI3-) and organic 3-chloro-1-propanethiol (CPT). By employing charge balance calculation, we identified the desired narrow band gap for QDs to complement the perovskite and c-Si absorption. The distinct choice of the organic ligand CPT enhances the colloidal stability of QDs in the solution phase and improves surface passivation to stop QD fusion in solid films. Photophysical properties show narrower excitonic and emission peaks and a reduction in the Stokes shift. Hybrid passivation leads to a 94% increase in the power conversion efficiency of solar cells and a 74% increase in the external quantum efficiency at the excitonic peak.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA