Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 81(1): 223-239, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32827089

RESUMO

Photorhabdus spp. (Enterobacteriales: Morganellaceae) occur exclusively as symbionts of Heterorhabditis nematodes for which they provide numerous services, including killing insects and providing nutrition and defence within the cadavers. Unusually, two species (Photorhabdus cinerea and Photorhabdus temperata) associate with a single population of Heterorhabditis downesi at a dune grassland site. Building on previous work, we investigated competition between these two Photorhabdus species both at the regional (between insects) and local (within insect) level by trait comparison and co-culture experiments. There was no difference between the species with respect to supporting nematode reproduction and protection of cadavers against invertebrate scavengers, but P. cinerea was superior to P. temperata in several traits: faster growth rate, greater antibacterial and antifungal activity and colonisation of a higher proportion of nematodes in co-culture. Moreover, where both bacterial symbionts colonised single nematode infective juveniles, P. cinerea tended to dominate in numbers. Differences between Photorhabdus species were detected in the suite of secondary metabolites produced: P. temperata produced several compounds not produced by P. cinerea including anthraquinone pigments. Bioluminescence emitted by P. temperata also tended to be brighter than that from P. cinerea. Bioluminescence and pigmentation may protect cadavers against scavengers that rely on sight. We conclude that while P. cinerea may show greater local level (within-cadaver) competitive success, co-existence of the two Photorhabdus species in the spatially heterogeneous environment of the dunes is favoured by differing specialisations in defence of the cadaver against differing locally important threats.


Assuntos
Photorhabdus/metabolismo , Strongyloidea/microbiologia , Simbiose/fisiologia , Animais , Antraquinonas/metabolismo , Pradaria , Medições Luminescentes , Photorhabdus/crescimento & desenvolvimento , Metabolismo Secundário/fisiologia
2.
Microb Ecol ; 73(1): 211-223, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543560

RESUMO

Bacterial symbionts are increasingly recognised as mediators of ecologically important traits of their animal hosts, with acquisition of new traits possible by uptake of novel symbionts. The entomopathogenic nematode Heterorhabditis downesi associates with two bacterial symbionts, Photorhabdus temperata subsp. temperata and P. temperata subsp. cinerea. At one intensively studied coastal dune site, P. temperata subsp. cinerea is consistently more frequently isolated than P. temperata subsp. temperata in H. downesi recovered from under the bare sand/Ammophila arrenaria of the front dunes (where harsh conditions, including drought, prevail). This is not the case in the more permissive closed dune grassland further from the sea. No differences were detected in ITS1 (internal transcribed spacer) sequence between nematode lines carrying either of the two symbiont subspecies, nor did they differ in their ability to utilise insects from three orders. The two symbionts could be readily swapped between lines, and both were carried in equal numbers within infective juveniles. In laboratory experiments, we tested whether the symbionts differentially affected nematode survival in insect cadavers that were allowed to dry. We assessed numbers of nematode infective juveniles emerging from insects that had been infected with H. downesi carrying either symbiont subspecies and then allowed to desiccate for up to 62 days. In moist conditions, cadavers produced similar numbers of nematodes, irrespective of the symbiont subspecies present, while under desiccating conditions, P. temperata subsp. cinerea cadavers yielded more nematode progeny than P. temperata subsp. temperata cadavers. Desiccating cadavers with the same nematode isolates, carrying either one or the other symbiont subspecies, confirmed that the symbiont was responsible for differences in nematode survival. Moreover, cadavers harbouring P. temperata subsp. cinerea had a reduced rate of drying relative to cadavers harbouring P. temperata subsp. temperata. Our experiments support the hypothesis that H. downesi can extend its niche into harsher conditions by associating with P. temperata subsp. cinerea.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Photorhabdus/isolamento & purificação , Photorhabdus/fisiologia , Rhabditoidea/microbiologia , Animais , DNA Intergênico/genética , Dessecação , Irlanda , Photorhabdus/genética , Simbiose
3.
Parasitology ; 144(14): 1956-1963, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28805166

RESUMO

In laboratory experiments, we investigated how media with varying ratio of peat:sand and two levels of compaction influence dispersal success of entomopathogenic nematode (EPN) species with different foraging strategies: Steinernema carpocapsae (ambusher), Heterorhabditis downesi (cruiser) and Steinernema feltiae (intermediate). Success was measured by the numbers of nematodes moving through a 4 cm column and invading a wax moth larva. We found that both compaction and increasing peat content generally decreased EPN infective juvenile (IJ) success for all three species. Of the three species, H. downesi was the least affected by peat content, and S. carpocapsae was the most adversely influenced by compaction. In addition, sex ratios of the invading IJs of the two Steinernema species were differentially influenced by peat content, and in the case of S. feltiae, sex ratio was also affected by compaction. This indicates that dispersal of male and female IJs is differentially affected by soil parameters and that this differentiation is species-specific. In conclusion, our study shows that organic matter: sand ratio and soil compaction have a marked influence on EPN foraging behaviour with implications for harnessing them as biological pest control agents.


Assuntos
Interações Hospedeiro-Parasita , Mariposas/parasitologia , Rhabdiasoidea/fisiologia , Solo/química , Strongyloidea/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/parasitologia , Mariposas/crescimento & desenvolvimento , Razão de Masculinidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA