Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 23(1): 405-416, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338926

RESUMO

The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis throughout life. Altered proteolysis and inflammatory processes involving RPE contribute to the pathophysiology of age-related macular degeneration (AMD), but the link between these remains elusive. We report for the first time the effect of advanced glycation end products (AGE)-known to accumulate on the ageing RPE's underlying Bruch's membrane in situ-on both key lysosomal cathepsins and NF-κB signalling in RPE. Cathepsin L activity and NF-κB effector levels decreased significantly following 2-week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 protein levels, indicating that AGE-related change of NF-κB effectors in RPE cells may be modulated by cathepsin L. However, upon TNFα stimulation, AGE-exposed cells had significantly higher ratio of phospho-p65(Ser536)/total p65 compared to non-AGEd controls, with an even higher fold increase than in the presence of cathepsin L inhibition alone. Increased proportion of active p65 indicates an AGE-related activation of NF-κB signalling in a higher proportion of cells and/or an enhanced response to TNFα. Thus, NF-κB signalling modulation in the AGEd environment, partially regulated via cathepsin L, is employed by RPE cells as a protective (para-inflammatory) mechanism but renders them more responsive to pro-inflammatory stimuli.


Assuntos
Catepsina L/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , NF-kappa B/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Humanos , Degeneração Macular/metabolismo
2.
Front Cell Neurosci ; 16: 786926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308121

RESUMO

Thymoquinone is a naturally occurring compound and is the major component of Nigella sativa, also known as black seed or black cumin. For centuries thymoquinone has been used especially in the Middle East traditionally to treat wounds, asthma, allergies, fever, headache, cough, hypertension, and diabetes. Studies have suggested beneficial effects of thymoquinone to be attributed to its antioxidant, antibacterial, anti-oxidative stress, anti-inflammatory, and neuroprotective properties. Recently, there has been a surge of interest in thymoquinone as a treatment for neurodegeneration in the brain, such as that seen in Alzheimer's (AD) and Parkinson's diseases (PD). In vitro and in vivo studies on animal models of AD and PD suggest the main neuroprotective mechanisms are based on the anti-inflammatory and anti-oxidative properties of thymoquinone. Neurodegenerative conditions of the eye, such as Age-related Macular Degeneration (AMD) and glaucoma share at least in part similar mechanisms of neuronal cell death with those occurring in AD and PD. This review aims to summarize and critically analyze the evidence to date of the effects and potential neuroprotective actions of thymoquinone in the eye and ocular neurodegenerations.

3.
Prog Retin Eye Res ; 79: 100859, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32278708

RESUMO

Secretory proteostasis integrates protein synthesis, processing, folding and trafficking pathways that are essential for efficient cellular secretion. For the retinal pigment epithelium (RPE), secretory proteostasis is of vital importance for the maintenance of the structural and functional integrity of apical (photoreceptors) and basal (Bruch's membrane/choroidal blood supply) sides of the environment it resides in. This integrity is achieved through functions governed by RPE secreted proteins, which include extracellular matrix modelling/remodelling, angiogenesis and immune response modulation. Impaired RPE secretory proteostasis affects not only the extracellular environment, but leads to intracellular protein aggregation and ER-stress with subsequent cell death. Ample recent evidence implicates dysregulated proteostasis as a key factor in the development of age-related macular degeneration (AMD), the leading cause of blindness in the developed world, and research aiming to characterise the roles of various proteins implicated in AMD-associated dysregulated proteostasis unveiled unexpected facets of the mechanisms involved in degenerative pathogenesis. This review analyses cellular processes unveiled by the study of the top 200 transcripts most abundantly expressed by the RPE/choroid in the light of the specialised secretory nature of the RPE. Functional roles of these proteins and the mechanisms of their impaired secretion, due to age and genetic-related causes, are analysed in relation to AMD development. Understanding the importance of RPE secretory proteostasis in relation to maintaining retinal health and how it becomes impaired in disease is of paramount importance for the development and assessment of future therapeutic advancements involving gene and cell therapies.


Assuntos
Degeneração Macular/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transporte Biológico , Lâmina Basilar da Corioide/metabolismo , Lâmina Basilar da Corioide/patologia , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Proteostase , Retina/patologia , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA