Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(12): 19048-19064, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381330

RESUMO

Confocal microscopy is one of the most widely used tools for high-resolution cellular, tissue imaging and industrial inspection. Micrograph reconstruction based on deep learning has become an effective tool for modern microscopy imaging techniques. While most deep learning methods neglect the imaging process mechanism, which requires a lot of work to solve the multi-scale image pairs aliasing problem. We show that these limitations can be mitigated via an image degradation model based on Richards-Wolf vectorial diffraction integral and confocal imaging theory. The low-resolution images required for network training are generated by model degradation from their high-resolution counterparts, thereby eliminating the need for accurate image alignment. The image degradation model ensures the generalization and fidelity of the confocal images. By combining the residual neural network with a lightweight feature attention module with degradation model of confocal microscopy ensures high fidelity and generalization. Experiments on different measured data report that compared with the two deconvolution algorithms, non-negative least squares algorithm and Richardson-Lucy algorithm, the structural similarity index between the network output image and the real image reaches a high level above 0.82, and the peak signal-to-noise ratio can be improved by more than 0.6 dB. It also shows good applicability in different deep learning networks.

2.
FASEB J ; 36(4): e22238, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224785

RESUMO

Hepatocellular carcinoma (HCC) is a major challenge for human health. Finding reliable diagnostic biomarkers and therapeutic targets for HCC is highly desired in the clinic. Currently, circulating exosomal lncRNA is a promising biomarker for the diagnosis of cancer and lncRNA is also a potential target in cancer therapy. Here, the diagnostic value of a panel based on exosomal lncRNA THEMIS2-211 and PRKACA-202, superior to that of AFP, was identified for diagnosing human HCC. Besides, the performance of exosomal lncRNA THEMIS2-211 alone exceeds that of AFP in diagnosing early-stage HCC patients (stage I). Furthermore, lncRNA THEMIS2-211 is highly expressed in HCC tissues and correlated with the poor prognosis of HCC patients. LncRNA THEMIS2-211 is upregulated and localized in the cytoplasm of HCC cells. LncRNA THEMIS2-211 exerts its biological function as an oncogene that promotes the proliferation, migration, invasion, EMT of HCC cells by physically interacting with miR-940 and therefore promoting SPOCK1 expressions. Rescue assays show the regulation of SPOCK1 by lncRNA THEMIS2-211 dependents on miR-940. The discovery of lncRNA THEMIS2-211 further illuminates the molecular pathogenesis of HCC and the THEMIS2-211/miR-940/SPOCK1 axis may act as a potential therapeutic target for HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/secundário , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/patologia , Proteoglicanas/metabolismo , RNA Longo não Codificante/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Proteoglicanas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263275

RESUMO

Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancer cells. M1 is a naturally occurring alphavirus (Togaviridae) which shows potent oncolytic activities against many cancers. Accumulation of unfolded proteins during virus replication leads to a transcriptional/translational response known as the unfolded protein response (UPR), which might counteract the antitumor effect of the oncolytic virus. In this report, we show that either pharmacological or biological inhibition of IRE1α or PERK, but not ATF6, substantially increases the oncolytic effects of the M1 virus. Moreover, inhibition of IRE1α blocks M1 virus-induced autophagy, which restricts the antitumor effects of the M1 virus through degradation of viral protein, in glioma cells. In addition, IRE1α suppression significantly increases the oncolytic effect of M1 virus in an orthotopic glioma model. From a molecular pathology study, we found that IRE1α is expressed at lower levels in higher-grade gliomas, suggesting greater antitumor efficacy of the oncolytic virus M1. Taken together, these findings illustrate a defensive mechanism of glioma cells against the oncolytic virus M1 and identify possible approaches to enhance the oncolytic viral protein accumulation and the subsequent lysis of tumor cells.IMPORTANCE Although oncolytic virotherapy is showing great promise in clinical applications, not all patients are benefiting. Identifying inhibitory signals in refractory cancer cells for each oncolytic virus would provide a good chance to increase the therapeutic effect. Here we describe that infection with the oncolytic virus M1 triggers the unfolded protein response (UPR) and subsequent autophagy, while blocking the UPR-autophagy axis significantly potentiates the antitumor efficacy of M1 in vitro and in vivo A survey of cancer tissue banks revealed that IRE1α, a key element in the UPR pathway, is commonly downregulated in higher-grade human gliomas, suggesting favorable prospects for the application of M1. Our work provides a potential predictor and target for enhancement of the therapeutic effectiveness of the M1 virus. We predict that the mechanism-based combination therapy will promote cancer virotherapy in the future.


Assuntos
Autofagia/imunologia , Endorribonucleases/deficiência , Glioma/terapia , Proteínas de Neoplasias/deficiência , Terapia Viral Oncolítica , Vírus Oncolíticos , Proteínas Serina-Treonina Quinases/deficiência , Togaviridae , Animais , Autofagia/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetinae , Endorribonucleases/imunologia , Feminino , Glioma/genética , Glioma/imunologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/imunologia , Células Vero , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Ther ; 24(1): 156-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26373347

RESUMO

Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.


Assuntos
Alphavirus/genética , Colforsina/administração & dosagem , AMP Cíclico/metabolismo , Neoplasias/terapia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose , Linhagem Celular Tumoral , Colforsina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/genética , Células HCT116 , Humanos , Camundongos , Neoplasias/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética
5.
Tumour Biol ; 37(11): 14721-14731, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27629139

RESUMO

The melastatin-like transient receptor potential 7 (TRPM7) has been implicated in proliferation or apoptosis of some cancers, indicating the potential of TRPM7 as an anti-anaplastic target. Here, we identified the characteristic TRPM7 channel currents in human malignant glioma MGR2 cells, which could be blocked by a pharmacologic inhibitor Gd3+. We mined the clinical sample data from Oncomine Database and found that human malignant glioma tissues expressed higher TRPM7 mRNA than normal brain ones. Importantly, we identified a widely used clinical anesthetic midazolam as a TRPM7 inhibitor. Midazolam treatment for seconds suppressed the TRPM7 currents and calcium influx, and treatment for 48 h inhibited the TRPM7 expression. The inhibitory effect on TRPM7 accounts for the proliferation loss and G0/G1 phase cell cycle arrest induced by midazolam. Our data demonstrates that midazolam represses proliferation of human malignant glioma cells through inhibiting TRPM7 currents, which may be further potentiated by suppressing the expression of TRPM7. Our result indicates midazolam as a pharmacologic lead compound with brain-blood barrier permeability for targeting TRPM7 in the glioma.


Assuntos
Ansiolíticos/farmacologia , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Glioma/tratamento farmacológico , Midazolam/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Canais de Cátion TRPM/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Mineração de Dados , Bases de Dados Factuais , Imunofluorescência , Glioma/metabolismo , Glioma/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Células Tumorais Cultivadas
6.
J Immunother Cancer ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302417

RESUMO

BACKGROUND: Although immune checkpoint inhibitor (ICI)-based therapy is advantageous for patients with advanced melanoma, resistance and relapse are frequent. Thus, it is crucial to identify effective drug combinations and develop new therapies for the treatment of melanoma. SGN1, a genetically modified Salmonella typhimurium species that causes the targeted deprivation of methionine in tumor tissues, is currently under investigation in clinical trials. However, the inhibitory effect of SGN1 on melanoma and the benefits of SGN1 in combination with ICIs remain largely unexplored. Therefore, this study aims to investigate the antitumor potential of SGN1, and its ability to enhance the efficacy of antibody-based programmed cell death-ligand 1 (PD-L1) inhibitors in the treatment of murine melanoma. METHODS: The antitumor activity of SGN1 and the effect of SGN1 on the efficacy of PD-L1 inhibitors was studied through murine melanoma models. Further, The Cancer Genome Atlas-melanoma cohort was clustered using ConsensusClusterPlus based on the methionine deprivation-related genes, and immune characterization was performed using xCell, Microenvironment Cell Populations-counter, Estimation of Stromal and Immune cells in MAlignant Tumor tissues using Expression data, and immunophenoscore (IPS) analyses. The messenger RNA data on programmed death-1 (PD-1) immunotherapy response were obtained from the Gene Expression Omnibus database. Gene Set Enrichment Analysis of methionine deprivation-up gene set was performed to determine the differences between pretreatment responders and non-responders. RESULTS: This study showed that both, the intratumoral and the intravenous administration of SGN1 in subcutaneous B16-F10 melanomas, suppress tumor growth, which was associated with an activated CD8+T-cell response in the tumor microenvironment. Combination therapy of SGN1 with systemic anti-PD-L1 therapy resulted in better antitumor activity than the individual monotherapies, respectively, and the high therapeutic efficacy of the combination was associated with an increase in the systemic level of tumor-specific CD8+ T cells. Two clusters consisting of methionine deprivation-related genes were identified. Patients in cluster 2 had higher expression of methionine_deprivation_up genes, better clinical outcomes, and higher immune infiltration levels compared with patients in cluster 1. Western blot, IPS analysis, and immunotherapy cohort study revealed that methionine deficiency may show a better response to ICI therapy CONCLUSIONS:: This study reports Salmonella-based SGN1 as a potent anticancer agent against melanoma, and lays the groundwork for the potential synergistic effect of ICIs and SGN1 brought about by improving the immune microenvironment in melanomas.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma Experimental , Humanos , Camundongos , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Metionina , Estudos de Coortes , Recidiva Local de Neoplasia , Melanoma Experimental/tratamento farmacológico , Salmonella , Microambiente Tumoral
7.
Cell Death Dis ; 15(5): 349, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769167

RESUMO

Osteosarcoma is a malignant bone tumor that primarily inflicts the youth. It often metastasizes to the lungs after chemotherapy failure, which eventually shortens patients' lives. Thus, there is a dire clinical need to develop a novel therapy to tackle osteosarcoma metastasis. Methionine dependence is a special metabolic characteristic of most malignant tumor cells that may offer a target pathway for such therapy. Herein, we demonstrated that methionine deficiency restricted the growth and metastasis of cultured human osteosarcoma cells. A genetically engineered Salmonella, SGN1, capable of overexpressing an L-methioninase and hydrolyzing methionine led to significant reduction of methionine and S-adenosyl-methionine (SAM) specifically in tumor tissues, drastically restricted the growth and metastasis in subcutaneous xenograft, orthotopic, and tail vein-injected metastatic models, and prolonged the survival of the model animals. SGN1 also sharply suppressed the growth of patient-derived organoid and xenograft. Methionine restriction in the osteosarcoma cells initiated severe mitochondrial dysfunction, as evident in the dysregulated gene expression of respiratory chains, increased mitochondrial ROS generation, reduced ATP production, decreased basal and maximum respiration, and damaged mitochondrial membrane potential. Transcriptomic and molecular analysis revealed the reduction of C1orf112 expression as a primary mechanism underlies methionine deprivation-initiated suppression on the growth and metastasis as well as mitochondrial functions. Collectively, our findings unraveled a molecular linkage between methionine restriction, mitochondrial function, and osteosarcoma growth and metastasis. A pharmacological agent, such as SGN1, that can achieve tumor specific deprivation of methionine may represent a promising modality against the metastasis of osteosarcoma and potentially other types of sarcomas as well.


Assuntos
Neoplasias Ósseas , Metionina , Mitocôndrias , Osteossarcoma , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Metionina/deficiência , Metionina/metabolismo , Humanos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Metástase Neoplásica , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacologia , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
8.
Cell Death Dis ; 14(2): 142, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805688

RESUMO

Differentiation therapy using small molecules is a promising strategy for improving the prognosis of glioblastoma (GBM). Histone acetylation plays an important role in cell fate determination. Nevertheless, whether histone acetylation in specific sites determines GBM cells fate remains to be explored. Through screening from a 349 small molecule-library, we identified that histone deacetylase inhibitor (HDACi) MS-275 synergized with 8-CPT-cAMP was able to transdifferentiate U87MG GBM cells into neuron-like cells, which were characterized by cell cycle arrest, rich neuron biomarkers, and typical neuron electrophysiology. Intriguingly, acetylation tags of histone 3 at lysine 9 (H3K9ac) were decreased in the promoter of multiple oncogenes and cell cycle genes, while ones of H3K9ac and histone 3 at lysine 14 (H3K14ac) were increased in the promoter of neuron-specific genes. We then compiled a list of genes controlled by H3K9ac and H3K14ac, and proved that it is a good predictive power for pathologic grading and survival prediction. Moreover, cAMP agonist combined with HDACi also induced glioma stem cells (GSCs) to differentiate into neuron-like cells through the regulation of H3K9ac/K14ac, indicating that combined induction has the potential for recurrence-preventive application. Furthermore, the combination of cAMP activator plus HDACi significantly repressed the tumor growth in a subcutaneous GSC-derived tumor model, and temozolomide cooperated with the differentiation-inducing combination to prolong the survival in an orthotopic GSC-derived tumor model. These findings highlight epigenetic reprogramming through H3K9ac and H3K14ac as a novel approach for driving neuron-fate-induction of GBM cells.


Assuntos
Glioblastoma , Glioma , Humanos , Acetilação , Histonas , Lisina , Glioma/tratamento farmacológico , Glioma/genética , Inibidores de Histona Desacetilases/farmacologia
9.
Transl Cancer Res ; 11(7): 2262-2274, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35966304

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most common and deadly tumors worldwide. Immunotherapy has emerged as a promising strategy for HCC treatment, and understanding the immune microenvironment of HCC provides a theoretical basis for identifying new immune targets. However, the roles of immune components and their regulatory mechanisms in HCC require further clarified. Methods: By analyzing HCC expression profiles from The Cancer Genome Atlas (TCGA) database, we depicted the proportion profile of immune cells for each sample using the software CIBERSORTx. Using R packages, we also characterized the distribution of differentially expressed genes (DEGs) in immune cells, calculated the correlation coefficient between immune cells and common DEGs, and analyzed their biology function by Gene-Ontology analysis. Results: We found that seven immune cell types were related to the overall survival of HCC patients, and identified 3,692 differentially expressed immune-related genes, predominantly functioning in nucleic acid processing and metabolism. Moreover, 14 DEGs were identified as common candidates related to immune cells and overall survival. Conclusions: Our study not only presents an overview of the immune features of the microenvironment of HCC, but also provides potential targets related to immune components.

10.
Front Oncol ; 11: 553706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777729

RESUMO

Angiogenesis is necessary for carcinoma progression and is regulated by a variety of pro- and anti-angiogenesis factors. CircRNAs are RNA molecules that do not have a 5'-cap or a 3'-polyA tail and are involved in a variety of biological functions. While circRNA-mediated regulation of tumor angiogenesis has received much attention, the detailed biological regulatory mechanism remains unclear. In this review, we investigated circRNAs in tumor angiogenesis from multiple perspectives, including its upstream and downstream factors. We believe that circRNAs have natural advantages and great potential for the diagnosis and treatment of tumors, which deserves further exploration.

11.
Biomark Med ; 15(5): 347-358, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33666519

RESUMO

Background: Recent studies have shown that cleavage and polyadenylation-specific factor 3 (CPSF3) is a promising antitumor therapeutic target, but its potential role in hepatocellular carcinoma (HCC) has not been reported. Materials & methods: We explored the expression pattern of CPSF3 in HCC through bioinformatics analysis, quantitative polymerase chain reaction (qPCR) and western blot. The potential role of CPSF3 as a biomarker for HCC was evaluated by Kaplan-Meier analysis. Next, changes in HCC cell lines in the CPSF3 knockdown model group and the control group were assessed by Cell Counting Kit-8, clonal formation, flow cytometry and EdU staining. Western blot detected changes in protein levels of the PI3K/Akt/GSK-3ß axis of two HCC cell lines in the knockdown group and the control group. Results: The results showed that the transcription and protein levels of CPSF3 were significantly higher in HCC tissues than in adjacent normal tissues (p < 0.05). The HCC cohort with increased expression of CPSF3 is associated with advanced stage and differentiation and predicts poorer prognosis (p < 0.05). CPSF3 knockdown significantly inhibited proliferation and clone formation of HepG2 and SMMC-7721 cell lines. Flow cytometry analysis showed G1-S cell cycle arrest in the CPSF3 knockdown group, and the results of EdU staining were consistent with this. Compared with the control group, p-Akt and cyclin D1 were decreased, and GSK-3ß was increased in the knockdown group. Conclusion: CPSF3 may be a potential diagnostic biomarker and candidate therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Estudos de Casos e Controles , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Fator de Especificidade de Clivagem e Poliadenilação/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
12.
Front Oncol ; 11: 609397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718162

RESUMO

BACKGROUND: Primary hepatic carcinoid tumor (PHCT) is rare and has unclear clinical characteristics and prognosis. METHODS: A retrospective study using data from the SEER database for patients diagnosed with PHCT used univariate and multivariate Cox models to screen for independent prognostic factors. The outcomes of patients in the surgical and nonsurgical groups were compared, and Propensity Score Matching (PSM) analysis was used to reduce confounder bias. RESULTS: A total of 186 PHCT patients were identified and the median survival was 65 (95% CI [43.287, 86.713]) months. Tumor size(HR = 2.493, 95% CI[1.222,5.083], p = 0.012), male(HR = 1.690, 95% CI[1.144,2.497], p = 0.008), age(HR = 2.583, 95% CI[1.697,3.930], p < 0.001), SEER stage(HR = 1.555, 95% CI[1.184,2.044], p = 0.002) and surgery(HR = 0.292, 95% CI[0.135,0.634], p = 0.002) were significantly correlated with patient prognosis. In multivariate analysis, sex(HR = 3.206, 95% CI[1.311,7.834], p = 0.011) and surgery(HR = 0.204, 95% CI[0.043,0.966], p = 0.0045) were independent predictors of patient prognosis. Females are potentially susceptible to PHCT but have a better prognosis. With consistent baseline data, surgical patients have a better prognosis. CONCLUSIONS: PHCT is uncommon and survival time is longer than that of other primary liver cancers. We found that none-surgery was potentially independent risk factors for poor prognosis.

13.
Am J Cancer Res ; 11(2): 458-478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575081

RESUMO

Activation of the cyclic adenosine monophosphate (cAMP) pathway induces the glial differentiation of glioblastoma (GBM) cells, but the fate of differentiated cells remains poorly understood. Transcriptome analyses have revealed significant changes in the cell cycle- and senescence-related pathways in differentiated GBM cells induced by dibutyryl cAMP (dbcAMP). Further investigations showed that reactive oxygen species (ROS) derived from enhanced mitochondrial function are involved in senescence induction and proliferation inhibition. Moreover, we found that IL-6 from dbcAMP- or temozolomide (TMZ)-induced senescent cells facilitates the glycolytic phenotype of GBM cells and that inhibiting the IL-6-related pathway hinders the proglycolytic effect of either agent. In patient-derived GBM xenograft models, a specific antibody targeting the IL-6 receptor tocilizumab (TCZ) significantly prolongs the survival time of TMZ-treated mice. Taken together, these results suggest that both the differentiation-inducing agent dbcAMP and the chemotherapy drug TMZ are able to drive GBM cells to senescence, and the latter releases IL-6 to potentiate glycolysis, suggesting that IL-6 is a target for adjuvant chemotherapy in GBM treatment.

14.
Cell Death Dis ; 10(5): 358, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043589

RESUMO

Given that glioma stem cells (GSCs) play a critical role in the initiation and chemoresistance in glioblastoma multiforme (GBM), targeting GSCs is an attractive strategy to treat GBM. Utilizing an anti-cancer compound library, we identified R406, the active metabolite of a FDA-approved Syk inhibitor for immune thrombocytopenia (ITP), with remarkable cytotoxicity against GSCs but not normal neural stem cells. R406 significantly inhibited neurosphere formation and triggered apoptosis in GSCs. R406 induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) and subsequently production of excess ROS in GSCs. R406 also diminished tumor growth and efficiently sensitized gliomas to temozolomide in GSC-initiating xenograft mouse models. Mechanistically, the anti-GSC effect of R406 was due to the disruption of Syk/PI3K signaling in Syk-positive GSCs and PI3K/Akt pathway in Syk-negative GSCs respectively. Overall, these findings not only identify R406 as a promising GSC-targeting agent but also reveal the important role of Syk and PI3K pathways in the regulation of energy metabolism in GSCs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Oxazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Quinase Syk/genética , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Adesão Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Camundongos Nus , Células-Tronco Neoplásicas , Fosforilação Oxidativa/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Análise de Sobrevida , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Oncol ; 13(7): 1589-1604, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31162799

RESUMO

Activation of the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway induces glial differentiation of glioblastoma (GBM) cells, but the mechanism by which microRNA (miRNA) regulate this process remains poorly understood. In this study, by performing miRNA genomics and loss- and gain-of-function assays in dibutyryl-cAMP-treated GBM cells, we identified a critical negative regulator, hsa-miR-1275, that modulates a set of genes involved in cancer progression, stem cell maintenance, and cell maturation and differentiation. Additionally, we confirmed that miR-1275 directly and negatively regulates the protein expression of glial fibrillary acidic protein (GFAP), a marker of mature astrocytes. Of note, tri-methyl-histone H3 (Lys27) (H3K27me3), downstream of the PKA/polycomb repressive complex 2 (PRC2) pathway, accounts for the downregulation of miR-1275. Furthermore, decreased miR-1275 expression and induction of GFAP expression were also observed in dibutyryl-cAMP-treated primary cultured GBM cells. In a patient-derived glioma stem cell tumor model, a cAMP elevator and an inhibitor of H3K27me3 methyltransferase inhibited tumor growth, induced differentiation, and reduced expression of miR-1275. In summary, our study shows that epigenetic inhibition of miR-1275 by the cAMP/PKA/PRC2/H3K27me3 pathway mediates glial induction of GBM cells, providing a new mechanism and novel targets for differentiation-inducing therapy.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Histonas/metabolismo , MicroRNAs/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Metilação , Camundongos Endogâmicos BALB C , Neuroglia/metabolismo , Neuroglia/patologia , Transcriptoma
16.
Hum Gene Ther ; 29(8): 950-961, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28750564

RESUMO

Oncolytic virotherapy is a novel and intriguing treatment strategy for cancer therapy. However, the clinical potential of oncolytic virus as single agent is limited. M1 virus is a promising oncolytic virus that has been tested in preclinical studies. In this study, we investigated the effect of the combination use of M1 virus and Bcl-2 family inhibitors. A chemical compounds screening including ten Bcl-2 family inhibitors demonstrated that pan-Bcl-2 inhibitors selectively augmented M1 virus oncolysis in cancer cells at very low doses. The mechanism of the enhanced antitumor effect of pan-Bcl-2 inhibitors with M1 virus is mainly due to the inhibition of Bcl-xL, which synergizes with M1-induced upregulation of Bak to trigger apoptosis. In xenograft mouse models and patient-derived tumor tissues, the combination of M1 and pan-Bcl-2 inhibitors significantly inhibited tumor growth and prolonged survival, suggesting the potential therapeutic value of this strategy. These findings offer insights into the synergy between Bcl-xL inhibition and oncolytic virus M1 as a combination anticancer treatment modality.


Assuntos
Neoplasias/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/virologia , Vírus Oncolíticos/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Rep ; 18(2): 468-481, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076790

RESUMO

Glioblastoma multiforme (GBM) is among the most aggressive of human cancers. Although differentiation therapy has been proposed as a potential approach to treat GBM, the mechanisms of induced differentiation remain poorly defined. Here, we established an induced differentiation model of GBM using cAMP activators that specifically directed GBM differentiation into astroglia. Transcriptomic and proteomic analyses revealed that oxidative phosphorylation and mitochondrial biogenesis are involved in induced differentiation of GBM. Dibutyryl cyclic AMP (dbcAMP) reverses the Warburg effect, as evidenced by increased oxygen consumption and reduced lactate production. Mitochondrial biogenesis induced by activation of the CREB-PGC1α pathway triggers metabolic shift and differentiation. Blocking mitochondrial biogenesis using mdivi1 or by silencing PGC1α abrogates differentiation; conversely, overexpression of PGC1α elicits differentiation. In GBM xenograft models and patient-derived GBM samples, cAMP activators also induce tumor growth inhibition and differentiation. Our data show that mitochondrial biogenesis and metabolic switch to oxidative phosphorylation drive the differentiation of tumor cells.


Assuntos
Astrócitos/patologia , Neoplasias Encefálicas/patologia , Diferenciação Celular , AMP Cíclico/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicólise , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/ultraestrutura , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Glioblastoma/genética , Glioblastoma/ultraestrutura , Glicólise/efeitos dos fármacos , Humanos , Biogênese de Organelas , Fosforilação Oxidativa/efeitos dos fármacos , Proteômica , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Hum Gene Ther ; 27(9): 700-11, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27296553

RESUMO

Cancers figure among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next 2 decades. Development of novel therapeutic agents is urgently needed for clinical cancer therapy. Alphavirus M1 is a Getah-like virus isolated from China with a genome of positive single-strand RNA. We have previously identified that alphavirus M1 is a naturally existing oncolytic virus with significant anticancer activity against different kinds of cancer (e.g., liver cancer, bladder cancer, and colon cancer). To support the incoming clinical trial of intravenous administration of alphavirus M1 to cancer patients, we assessed the safety of M1 in adult nonhuman primates. We previously presented the genome sequencing data of the cynomolgus macaques (Macaca fascicularis), which was demonstrated as an ideal animal species for virus infection study. Therefore, we chose cynomolgus macaques of either sex for the present safety study of oncolytic virus M1. In the first round of administration, five experimental macaques were intravenously injected with six times of oncolytic virus M1 (1 × 10(9) pfu/dose) in 1 week, compared with five vehicle-injected control animals. The last two rounds of injections were further completed in the following months in the same way as the first round. Body weight, temperature, complete blood count, clinical biochemistries, cytokine profiles, lymphocytes subsets, neutralizing antibody, and clinical symptoms were closely monitored at different time points. Magnetic resonance imaging was also performed to assess the possibility of encephalitis or arthritis. As a result, no clinical, biochemical, immunological, or medical imaging or other pathological evidence of toxicity was found during the whole process of the study. Our results in cynomolgus macaques suggested the safety of intravenous administration of oncolytic virus M1 in cancer patients in the future.


Assuntos
Alphavirus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vetores Genéticos/administração & dosagem , Vírus Oncolíticos/imunologia , Alphavirus/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Injeções Intravenosas , Macaca fascicularis , Masculino , Vírus Oncolíticos/genética
19.
Int J Pharm ; 487(1-2): 17-24, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25841571

RESUMO

The toxicity and irritation associated with high amounts of surfactants restrict the extensive utilization of microemulsions. To address these shortcomings, employing mixed oils to enlarge microemulsion areas therefore reducing surfactant contents is a promising strategy. However, what kinds of mixed oils are more efficient in enlarging microemulsion areas still remains unclear. In this research, we found that the chain length and degree of unsaturation of oils play a key role in enlarging microemulsion areas. The combination of moderate chain saturated oil caprylic/capric triglyceride (GTCC) with long chain unsaturated oil glycerol trioleate significantly increased the microemulsion areas. Solubility of ibuprofen in the mixed oils was unexpectedly and remarkably increased (almost 300mg/mL) compared with that (around 100mg/mL) of the single oil (GTCC), which also resulted in greatly increased solubility of ibuprofen in mixed oils-containing microemulsions. By optimizing the mixed oil formulation, the absolute amount of surfactant in drug-loaded microemulsions was reduced but increased drug oral bioavailability in rats was maintained. It could be concluded that the combined use of moderate chain oils and long chain unsaturated oils could not only acquire enlarged microemulsion areas but also enhanced drug solubility, therefore doubly reducing surfactant amount, which is extremely beneficial for developing safe microemulsions.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Emulsões/química , Ibuprofeno/administração & dosagem , Ibuprofeno/farmacocinética , Óleos/química , Tensoativos/química , Animais , Disponibilidade Biológica , Caprilatos/química , Química Farmacêutica , Ácidos Decanoicos/química , Estabilidade de Medicamentos , Condutividade Elétrica , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade , Suspensões , Triglicerídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA