Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(1): 62-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37474759

RESUMO

Cells interpret a variety of signals through G-protein-coupled receptors (GPCRs) and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different physiological responses despite generating similar levels of cAMP. We previously showed that some GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to elicit different physiological outputs. We show that generating cAMP from the Golgi leads to the regulation of a specific protein kinase A (PKA) target that increases the rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We further validated the physiological consequences of these observations in intact zebrafish and mice. Thus, we demonstrate that the same GPCR acting through the same second messenger regulates cardiac contraction and relaxation dependent on its subcellular location.


Assuntos
Transdução de Sinais , Peixe-Zebra , Camundongos , Animais , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Miócitos Cardíacos , Receptores Acoplados a Proteínas G/metabolismo
2.
J Biol Chem ; 296: 100345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33515548

RESUMO

G-protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal signaling of the neurokinin 1 receptor (NK1R) mediates nociception, as demonstrated in models of acute and neuropathic pain. An NK1R antagonist, Spantide I (Span), conjugated to cholestanol (Span-Chol), accumulates in endosomes, inhibits endosomal NK1R signaling, and causes prolonged antinociception. However, the extent to which the Chol-anchor influences long-term location and activity is poorly understood. Herein, we used fluorescent correlation spectroscopy and targeted biosensors to characterize Span-Chol over time. The Chol-anchor increased local concentration of probe at the plasma membrane. Over time we observed an increase in NK1R-binding affinity and more potent inhibition of NK1R-mediated calcium signaling. Span-Chol, but not Span, caused a persistent decrease in NK1R recruitment of ß-arrestin and receptor internalization to early endosomes. Using targeted biosensors, we mapped the relative inhibition of NK1R signaling as the receptor moved into the cell. Span selectively inhibited cell surface signaling, whereas Span-Chol partitioned into endosomal membranes and blocked endosomal signaling. In a preclinical model of pain, Span-Chol caused prolonged antinociception (>9 h), which is attributable to a three-pronged mechanism of action: increased local concentration at membranes, a prolonged decrease in NK1R endocytosis, and persistent inhibition of signaling from endosomes. Identifying the mechanisms that contribute to the increased preclinical efficacy of lipid-anchored NK1R antagonists is an important step toward understanding how we can effectively target intracellular GPCRs in disease.


Assuntos
Analgésicos/farmacologia , Colestanol/farmacologia , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Dor/tratamento farmacológico , Substância P/análogos & derivados , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colestanol/análogos & derivados , Colestanol/uso terapêutico , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Antagonistas dos Receptores de Neurocinina-1/química , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Dor/metabolismo , Manejo da Dor , Substância P/química , Substância P/farmacologia , Substância P/uso terapêutico
3.
Elife ; 112022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35467530

RESUMO

Dopamine is a key catecholamine in the brain and kidney, where it is involved in a number of physiological functions such as locomotion, cognition, emotion, endocrine regulation, and renal function. As a membrane-impermeant hormone and neurotransmitter, dopamine is thought to signal by binding and activating dopamine receptors, members of the G protein coupled receptor (GPCR) family, only on the plasma membrane. Here, using novel nanobody-based biosensors, we demonstrate for the first time that the dopamine D1 receptor (D1DR), the primary mediator of dopaminergic signaling in the brain and kidney, not only functions on the plasma membrane but becomes activated at the Golgi apparatus in the presence of its ligand. We present evidence that activation of the Golgi pool of D1DR is dependent on organic cation transporter 2 (OCT2), a dopamine transporter, providing an explanation for how the membrane-impermeant dopamine accesses subcellular pools of D1DR. We further demonstrate that dopamine activates Golgi-D1DR in murine striatal medium spiny neurons, and this activity depends on OCT2 function. We also introduce a new approach to selectively interrogate compartmentalized D1DR signaling by inhibiting Gαs coupling using a nanobody-based chemical recruitment system. Using this strategy, we show that Golgi-localized D1DRs regulate cAMP production and mediate local protein kinase A activation. Together, our data suggest that spatially compartmentalized signaling hubs are previously unappreciated regulatory aspects of D1DR signaling. Our data provide further evidence for the role of transporters in regulating subcellular GPCR activity.


Assuntos
Complexo de Golgi , Transportador 2 de Cátion Orgânico , Receptores de Dopamina D1 , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Complexo de Golgi/metabolismo , Camundongos , Transportador 2 de Cátion Orgânico/metabolismo , Receptores de Dopamina D1/metabolismo
4.
Nat Nanotechnol ; 14(12): 1150-1159, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31686009

RESUMO

Nanoparticle-mediated drug delivery is especially useful for targets within endosomes because of the endosomal transport mechanisms of many nanomedicines within cells. Here, we report the design of a pH-responsive, soft polymeric nanoparticle for the targeting of acidified endosomes to precisely inhibit endosomal signalling events leading to chronic pain. In chronic pain, the substance P (SP) neurokinin 1 receptor (NK1R) redistributes from the plasma membrane to acidified endosomes, where it signals to maintain pain. Therefore, the NK1R in endosomes provides an important target for pain relief. The pH-responsive nanoparticles enter cells by clathrin- and dynamin-dependent endocytosis and accumulate in NK1R-containing endosomes. Following intrathecal injection into rodents, the nanoparticles, containing the FDA-approved NK1R antagonist aprepitant, inhibit SP-induced activation of spinal neurons and thus prevent pain transmission. Treatment with the nanoparticles leads to complete and persistent relief from nociceptive, inflammatory and neuropathic nociception and offers a much-needed non-opioid treatment option for chronic pain.


Assuntos
Aprepitanto/administração & dosagem , Dor Crônica/tratamento farmacológico , Preparações de Ação Retardada/metabolismo , Nanopartículas/metabolismo , Antagonistas dos Receptores de Neurocinina-1/administração & dosagem , Animais , Aprepitanto/farmacocinética , Aprepitanto/uso terapêutico , Linhagem Celular , Dor Crônica/metabolismo , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Antagonistas dos Receptores de Neurocinina-1/farmacocinética , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Ratos , Receptores da Neurocinina-1/metabolismo
5.
Sci Transl Med ; 9(392)2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566424

RESUMO

Typically considered to be cell surface sensors of extracellular signals, heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) control many pathophysiological processes and are the target of 30% of therapeutic drugs. Activated receptors redistribute to endosomes, but researchers have yet to explore whether endosomal receptors generate signals that control complex processes in vivo and are viable therapeutic targets. We report that the substance P (SP) neurokinin 1 receptor (NK1R) signals from endosomes to induce sustained excitation of spinal neurons and pain transmission and that specific antagonism of the NK1R in endosomes with membrane-anchored drug conjugates provides more effective and sustained pain relief than conventional plasma membrane-targeted antagonists. Pharmacological and genetic disruption of clathrin, dynamin, and ß-arrestin blocked SP-induced NK1R endocytosis and prevented SP-stimulated activation of cytosolic protein kinase C and nuclear extracellular signal-regulated kinase, as well as transcription. Endocytosis inhibitors prevented sustained SP-induced excitation of neurons in spinal cord slices in vitro and attenuated nociception in vivo. When conjugated to cholestanol to promote endosomal targeting, NK1R antagonists selectively inhibited endosomal signaling and sustained neuronal excitation. Cholestanol conjugation amplified and prolonged the antinociceptive actions of NK1R antagonists. These results reveal a critical role for endosomal signaling of the NK1R in the complex pathophysiology of pain and demonstrate the use of endosomally targeted GPCR antagonists.


Assuntos
Endossomos/metabolismo , Terapia de Alvo Molecular , Nociceptividade , Dor/tratamento farmacológico , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais , Animais , Compartimento Celular , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Lipídeos/química , Modelos Biológicos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Nociceptividade/efeitos dos fármacos , Dor/patologia , Ligação Proteica/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/patologia , Frações Subcelulares/metabolismo , Substância P/metabolismo , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA