Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 12: 71, 2015 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879763

RESUMO

BACKGROUND: Neuro-inflammation has long been implicated as a contributor to the progression of Alzheimer's disease in both humans and animal models. Type-1 interferons (IFNs) are pleiotropic cytokines critical in mediating the innate immune pro-inflammatory response. The production of type-1 IFNs following pathogen detection is, in part, through the activation of the toll-like receptors (TLRs) and subsequent signalling through myeloid differentiation factor-88 (Myd88) and interferon regulatory factors (IRFs). We have previously identified that neuronal type-1 IFN signalling, through the type-1 interferon alpha receptor-1 (IFNAR1), is detrimental in models of AD. Using an in vitro approach, this study investigated the TLR network as a potential production pathway for neuronal type-1 IFNs in response to Aß. METHODS: Wildtype and Myd88(-/-) primary cultured cortical and hippocampal neurons were treated with 2.5 µM Aß1-42 for 24 to 72 h or 1 to 10 µM Aß1-42 for 72 h. Human BE(2)M17 neuroblastoma cells stably expressing an IRF7 small hairpin RNA (shRNA) or negative control shRNA construct were subjected to 7.5 µM Aß1-42/Aß42-1 for 24 to 96 h, 2.5 to 15 µM Aß1-42 for 96 h or 100 ng/ml LPS for 0.5 to 24 h. Q-PCR was used to analyse IFNα, IFNß, IL-1ß, IL-6 and TNFα mRNA transcript levels. Phosphorylation of STAT-3 was detected by Western blot analysis, and cell viability was assessed by MTS assay. RESULTS: Reduced IFNα, IFNß, IL-1ß, IL-6 and TNFα expression was detected in Aß1-42-treated Myd88(-/-) neurons compared to wildtype cells. This correlated with reduced phosphorylation of STAT-3, a downstream type-1 IFN signalling mediator. Significantly, Myd88(-/-) neuronal cultures were protected against Aß1-42-induced neurotoxicity compared to wildtype as determined by MTS assay. Knockdown of IRF7 in M17 cells was sufficient in blocking IFNα, IFNß and p-STAT-3 induction to both Aß1-42 and the TLR4 agonist LPS. M17 IRF7 KD cells were also protected against Aß1-42-induced cytotoxicity. CONCLUSIONS: This study confirms that the neuronal type-1 IFN response to soluble amyloid is mediated primarily through TLRs. This production is dependent upon Myd88 and IRF7 signalling. This study suggests that targeting this pathway to modulate neuronal type-1 IFN levels may be beneficial in controlling Aß-induced neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fragmentos de Peptídeos/farmacologia , Análise de Variância , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Regulação da Expressão Gênica/genética , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Neuroblastoma/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA