Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(42): 26382-26388, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32994343

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached nearly every country in the world with extraordinary person-to-person transmission. The most likely original source of the virus was spillover from an animal reservoir and subsequent adaptation to humans sometime during the winter of 2019 in Wuhan Province, China. Because of its genetic similarity to SARS-CoV-1, it is probable that this novel virus has a similar host range and receptor specificity. Due to concern for human-pet transmission, we investigated the susceptibility of domestic cats and dogs to infection and potential for infected cats to transmit to naive cats. We report that cats are highly susceptible to infection, with a prolonged period of oral and nasal viral shedding that is not accompanied by clinical signs, and are capable of direct contact transmission to other cats. These studies confirm that cats are susceptible to productive SARS-CoV-2 infection, but are unlikely to develop clinical disease. Further, we document that cats developed a robust neutralizing antibody response that prevented reinfection following a second viral challenge. Conversely, we found that dogs do not shed virus following infection but do seroconvert and mount an antiviral neutralizing antibody response. There is currently no evidence that cats or dogs play a significant role in human infection; however, reverse zoonosis is possible if infected owners expose their domestic pets to the virus during acute infection. Resistance to reinfection holds promise that a vaccine strategy may protect cats and, by extension, humans.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Animais , Animais Domésticos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Betacoronavirus/imunologia , COVID-19 , Gatos , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Modelos Animais de Doenças , Cães , Feminino , Masculino , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Eliminação de Partículas Virais
2.
Emerg Infect Dis ; 27(12): 3103-3110, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34808089

RESUMO

Anthrax is a disease of concern in many mammals, including humans. Management primarily consists of prevention through vaccination and tracking clinical-level observations because environmental isolation is laborious and bacterial distribution across large geographic areas difficult to confirm. Feral swine (Sus scrofa) are an invasive species with an extensive range in the southern United States that rarely succumbs to anthrax. We present evidence that feral swine might serve as biosentinels based on comparative seroprevalence in swine from historically defined anthrax-endemic and non-anthrax-endemic regions of Texas. Overall seropositivity was 43.7% (n = 478), and logistic regression revealed county endemicity status, age-class, sex, latitude, and longitude were informative for predicting antibody status. However, of these covariates, only latitude was statistically significant (ß = -0.153, p = 0.047). These results suggests anthrax exposure in swine, when paired with continuous location data, could serve as a proxy for bacterial presence in specific areas.


Assuntos
Antraz , Doenças dos Suínos , Animais , Animais Selvagens , Antraz/epidemiologia , Antraz/veterinária , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/epidemiologia , Texas/epidemiologia , Estados Unidos
3.
Emerg Infect Dis ; 27(8): 2073-2080, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34286685

RESUMO

Wild animals have been implicated as the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but it is largely unknown how the virus affects most wildlife species and if wildlife could ultimately serve as a reservoir for maintaining the virus outside the human population. We show that several common peridomestic species, including deer mice, bushy-tailed woodrats, and striped skunks, are susceptible to infection and can shed the virus in respiratory secretions. In contrast, we demonstrate that cottontail rabbits, fox squirrels, Wyoming ground squirrels, black-tailed prairie dogs, house mice, and racoons are not susceptible to SARS-CoV-2 infection. Our results expand the knowledge base of susceptible species and provide evidence that human-wildlife interactions could result in continued transmission of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Animais Selvagens , Suscetibilidade a Doenças , Humanos , Mamíferos , Camundongos
4.
Virology ; 582: 100-105, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043909

RESUMO

Influenza A viruses are a diverse group of pathogens that have been responsible for millions of human and avian deaths throughout history. Here, we illustrate the transmission potential of H7N9 influenza A virus between Coturnix quail (Coturnix sp.), domestic ducks (Anas platyrhynchos domesticus), chickens (Gallus gallus domesticus), and house sparrows (Passer domesticus) co-housed in an artificial barnyard setting. In each of four replicates, individuals from a single species were infected with the virus. Quail shed virus orally and were a source of infection for both chickens and ducks. Infected chickens transmitted the virus to quail but not to ducks or house sparrows. Infected ducks transmitted to chickens, resulting in seroconversion without viral shedding. House sparrows did not shed virus sufficiently to transmit to other species. These results demonstrate that onward transmission varies by index species, and that gallinaceous birds are more likely to maintain H7N9 than ducks or passerines.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Galinhas , Coturnix , Patos , Eliminação de Partículas Virais
5.
Microbiol Spectr ; : e0503522, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916971

RESUMO

Oral delivery of an inexpensive COVID-19 (coronavirus disease 2019) vaccine could dramatically improve immunization rates, especially in low- and middle-income countries. Previously, we described a potential universal COVID-19 vaccine, rLVS ΔcapB/MN, comprising a replicating bacterial vector, LVS (live vaccine strain) ΔcapB, expressing the highly conserved SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) membrane and nucleocapsid (N) proteins, which, when administered intradermally or intranasally, protects hamsters from severe COVID-19-like disease after high-dose SARS-CoV-2 respiratory challenge. Here, we show that oral administration of the vaccine also protects against high-dose SARS-CoV-2 respiratory challenge; its protection is comparable to that of intradermal, intranasal, or subcutaneous administration. Hamsters were protected against severe weight loss and lung pathology and had reduced oropharyngeal and lung virus titers. Protection against weight loss and histopathology by the vaccine, which in mice induces splenic and lung cell interferon gamma in response to N protein stimulation, was correlated in hamsters with pre-challenge serum anti-N TH1-biased IgG (IgG2/3). Thus, rLVS ΔcapB/MN has potential as an oral universal COVID-19 vaccine. IMPORTANCE The COVID-19 pandemic continues to rage into its fourth year worldwide. To protect the world's population most effectively from severe disease, hospitalization, and death, a vaccine is needed that is resistant to rapidly emerging viral variants of the causative agent SARS-CoV-2, inexpensive to manufacture, store, and transport, and easy to administer. Ideally, such a vaccine would be capable of oral administration, especially in resource-poor countries of the world where there are shortages of needles, syringes and trained personnel to administer injectable vaccines. Here, we show that oral administration of a bacterium-vectored vaccine meeting all these criteria protects naturally susceptible Syrian hamsters from severe COVID-19-like disease, including severe weight loss and lung pathology, after high-dose SARS-CoV-2 respiratory challenge. As the vaccine is based upon inducing immunity to highly conserved SARS-CoV-2 membrane and nucleocapsid proteins, as opposed to the rapidly mutating Spike protein, it should remain resistant to newly emerging SARS-CoV-2 variants.

6.
Pathogens ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111508

RESUMO

Anthrax is a disease that affects livestock, wildlife, and humans worldwide; however, its relative impacts on these populations remain underappreciated. Feral swine (Sus scrofa) are relatively resistant to developing anthrax, and past serosurveys have alluded to their utility as sentinels, yet empirical data to support this are lacking. Moreover, whether feral swine may assist in the dissemination of infectious spores is unknown. To address these knowledge gaps, we intranasally inoculated 15 feral swine with varying quantities of Bacillus anthracis Sterne 34F2 spores and measured the seroconversion and bacterial shedding over time. The animals also were inoculated either one or three times. The sera were evaluated by enzyme-linked immunosorbent assay (ELISA) for antibodies against B. anthracis, and nasal swabs were cultured to detect bacterial shedding from the nasal passages. We report that the feral swine developed antibody responses to B. anthracis and that the strength of the response correlated with the inoculum dose and the number of exposure events experienced. Isolation of viable bacteria from the nasal passages of the animals throughout the study period suggests that feral swine may assist in the spread of infectious spores on the landscape and have implications for the identification of environments contaminated with B. anthracis as well as the exposure risk to more susceptible hosts.

7.
NPJ Vaccines ; 6(1): 47, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785745

RESUMO

To generate an inexpensive readily manufactured COVID-19 vaccine, we employed the LVS ΔcapB vector platform, previously used to generate potent candidate vaccines against Select Agent diseases tularemia, anthrax, plague, and melioidosis. Vaccines expressing SARS-CoV-2 structural proteins are constructed using the LVS ΔcapB vector, a highly attenuated replicating intracellular bacterium, and evaluated for efficacy in golden Syrian hamsters, which develop severe COVID-19-like disease. Hamsters immunized intradermally or intranasally with a vaccine co-expressing the Membrane and Nucleocapsid proteins and challenged 5 weeks later with a high dose of SARS-CoV-2 are protected against severe weight loss and lung pathology and show reduced viral loads in the oropharynx and lungs. Protection correlates with anti-Nucleocapsid antibody. This potent vaccine should be safe; inexpensive; easily manufactured, stored, and distributed; and given the high homology between Membrane and Nucleocapsid proteins of SARS-CoV and SARS-CoV-2, potentially serve as a universal vaccine against the SARS subset of pandemic causing ß-coronaviruses.

8.
Transbound Emerg Dis ; 68(4): 1910-1965, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33176063

RESUMO

African swine fever (ASF), classical swine fever (CSF) and foot-and-mouth disease (FMD) are considered to be three of the most detrimental animal diseases and are currently foreign to the U.S. Emerging and re-emerging pathogens can have tremendous impacts in terms of livestock morbidity and mortality events, production losses, forced trade restrictions, and costs associated with treatment and control. The United States is the world's top producer of beef for domestic and export use and the world's third-largest producer and consumer of pork and pork products; it has also recently been either the world's largest or second largest exporter of pork and pork products. Understanding the routes of introduction into the United States and the potential economic impact of each pathogen are crucial to (a) allocate resources to prevent routes of introduction that are believed to be more probable, (b) evaluate cost and efficacy of control methods and (c) ensure that protections are enacted to minimize impact to the most vulnerable industries. With two scoping literature reviews, pulled from global data, this study assesses the risk posed by each disease in the event of a viral introduction into the United States and illustrates what is known about the economic costs and losses associated with an outbreak.


Assuntos
Febre Suína Africana , Febre Aftosa , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Animais , Bovinos , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/prevenção & controle , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Gado , Suínos , Estados Unidos/epidemiologia
9.
Vaccines (Basel) ; 9(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916180

RESUMO

The COVID-19 pandemic has generated intense interest in the rapid development and evaluation of vaccine candidates for this disease and other emerging diseases. Several novel methods for preparing vaccine candidates are currently undergoing clinical evaluation in response to the urgent need to prevent the spread of COVID-19. In many cases, these methods rely on new approaches for vaccine production and immune stimulation. We report on the use of a novel method (SolaVAX) for production of an inactivated vaccine candidate and the testing of that candidate in a hamster animal model for its ability to prevent infection upon challenge with SARS-CoV-2 virus. The studies employed in this work included an evaluation of the levels of neutralizing antibody produced post-vaccination, levels of specific antibody sub-types to RBD and spike protein that were generated, evaluation of viral shedding post-challenge, flow cytometric and single cell sequencing data on cellular fractions and histopathological evaluation of tissues post-challenge. The results from this preliminary evaluation provide insight into the immunological responses occurring as a result of vaccination with the proposed vaccine candidate and the impact that adjuvant formulations, specifically developed to promote Th1 type immune responses, have on vaccine efficacy and protection against infection following challenge with live SARS-CoV-2. This data may have utility in the development of effective vaccine candidates broadly. Furthermore, the results of this preliminary evaluation suggest that preparation of a whole virion vaccine for COVID-19 using this specific photochemical method may have potential utility in the preparation of one such vaccine candidate.

10.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33211088

RESUMO

SARS-CoV-2, the causative agent of COVID-19, has been responsible for over 42 million infections and 1 million deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here, we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a Syrian hamster model of SARS-CoV-2 and in a mouse-adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). Antibody combinations were effective for prevention and in therapy when administered early. However, in vitro antibody neutralization potency did not uniformly correlate with in vivo protection, and some hu-mAbs were more protective in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors contributes to optimal protection against SARS-CoV-2 MA. The data indicate that intact effector function can affect hu-mAb protective activity and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention.


Assuntos
Anticorpos Monoclonais Murinos , Anticorpos Neutralizantes , Anticorpos Antivirais , Betacoronavirus/imunologia , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , COVID-19 , Linhagem Celular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Feminino , Humanos , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , SARS-CoV-2
11.
J Anim Sci ; 97(6): 2279-2282, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30767011

RESUMO

USDA APHIS Wildlife Services (WS) responded to the threat of feral swine as a pathogen reservoir as early as 2004. To increase awareness and knowledge on that risk, WS began opportunistic sampling of animals harvested by its operational component to curtail swine damage to agriculture and property. Initially, pseudorabies and swine brucellosis were of most concern, as both serve as a potential threat to the domestic swine industry and the latter also possesses zoonotic implications. In 2006, classical swine fever, a foreign animal disease, became the main driver for feral swine pathogen surveillance. Subsequent years of surveillance identified numerous other disease risks inherent within populations of feral swine. Presently, feral swine surveillance falls under the purview of the APHIS National Feral Swine Damage Management Program, which began in 2014. In January 2018, a panel of animal disease experts representing industry, government, and academia were invited to Fort Collins, Colorado to discuss successes of this surveillance, identify any shortcomings or needs, and propose future feral swine surveillance. This manuscript serves to synthesize WS' surveillance and the future direction of these efforts.


Assuntos
Brucelose/veterinária , Peste Suína Clássica/epidemiologia , Pseudorraiva/epidemiologia , Doenças dos Suínos/epidemiologia , Animais , Animais Selvagens , Brucelose/epidemiologia , Brucelose/microbiologia , Peste Suína Clássica/virologia , Reservatórios de Doenças , Monitoramento Epidemiológico , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/microbiologia , Estados Unidos/epidemiologia , United States Department of Agriculture
12.
J Wildl Dis ; 54(3): 450-459, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29715063

RESUMO

From 2011 to 2017, 4,534 serum samples from 13 wildlife species collected across the US and in one territory (US Virgin Islands) were tested for exposure to Leptospira serovars Bratislava, Canicola, Grippotyphosa, Hardjo, Icterohaemorrhagiae, and Pomona. Of 1,759 canids, 1,043 cervids, 23 small Indian mongooses ( Herpestes auropunctatus), 1,704 raccoons ( Procyon lotor), and five striped skunks ( Mephitis mephitis), 27.0, 44.4, 30.4, 40.8, and 60%, respectively, were antibody positive for any of the six serovars. The most commonly detected serovars across all species were Bratislava and Grippotyphosa. Our results indicate that Leptospira titers are very common in a wide variety of wildlife species. These species may act as important reservoirs in the epidemiological cycle of the pathogen. Additional studies to determine the relationship between serologic evidence and shedding of the pathogen by wildlife are necessary to better understand the risk.


Assuntos
Anticorpos Antibacterianos/sangue , Leptospira/imunologia , Mamíferos/sangue , Animais , Animais Selvagens , Leptospirose/sangue , Leptospirose/epidemiologia , Leptospirose/veterinária , Sorogrupo , Estados Unidos/epidemiologia , Ilhas Virgens Americanas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA