Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 70(4): 1101-1113, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33123754

RESUMO

Although immunotherapy has achieved impressive durable clinical responses, many cancers respond only temporarily or not at all to immunotherapy. To find novel, targetable mechanisms of resistance to immunotherapy, patient-derived melanoma cell lines were transduced with 576 open reading frames, or exposed to arrayed libraries of 850 bioactive compounds, prior to co-culture with autologous tumor-infiltrating lymphocytes (TILs). The synergy between the targets and TILs to induce apoptosis, and the mechanisms of inhibiting resistance to TILs were interrogated. Gene expression analyses were performed on tumor samples from patients undergoing immunotherapy for metastatic melanoma. Finally, the effect of inhibiting the top targets on the efficacy of immunotherapy was investigated in multiple preclinical models. Aurora kinase was identified as a mediator of melanoma cell resistance to T-cell-mediated cytotoxicity in both complementary screens. Aurora kinase inhibitors were validated to synergize with T-cell-mediated cytotoxicity in vitro. The Aurora kinase inhibition-mediated sensitivity to T-cell cytotoxicity was shown to be partially driven by p21-mediated induction of cellular senescence. The expression levels of Aurora kinase and related proteins were inversely correlated with immune infiltration, response to immunotherapy and survival in melanoma patients. Aurora kinase inhibition showed variable responses in combination with immunotherapy in vivo, suggesting its activity is modified by other factors in the tumor microenvironment. These data suggest that Aurora kinase inhibition enhances T-cell cytotoxicity in vitro and can potentiate antitumor immunity in vivo in some but not all settings. Further studies are required to determine the mechanism of primary resistance to this therapeutic intervention.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Resistencia a Medicamentos Antineoplásicos/imunologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Linfócitos T Citotóxicos/transplante , Animais , Apoptose , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Proliferação de Células , Feminino , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/terapia , Camundongos , Prognóstico , Taxa de Sobrevida , Linfócitos T Citotóxicos/imunologia , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biomed Microdevices ; 12(5): 855-63, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20574820

RESUMO

It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 x 10(8) primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19+ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.


Assuntos
Eletroporação/instrumentação , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , RNA Mensageiro/genética , Receptores de Antígenos/genética , Receptores de Antígenos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/citologia
3.
Oncoimmunology ; 7(4): e1412909, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632728

RESUMO

Exosomes can mediate a dynamic method of communication between malignancies, including those sequestered in the central nervous system and the immune system. We sought to determine whether exosomes from glioblastoma (GBM)-derived stem cells (GSCs) can induce immunosuppression. We report that GSC-derived exosomes (GDEs) have a predilection for monocytes, the precursor to macrophages. The GDEs traverse the monocyte cytoplasm, cause a reorganization of the actin cytoskeleton, and skew monocytes toward the immune suppresive M2 phenotype, including programmed death-ligand 1 (PD-L1) expression. Mass spectrometry analysis demonstrated that the GDEs contain a variety of components, including members of the signal transducer and activator of transcription 3 (STAT3) pathway that functionally mediate this immune suppressive switch. Western blot analysis revealed that upregulation of PD-L1 in GSC exosome-treated monocytes and GBM-patient-infiltrating CD14+ cells predominantly correlates with increased phosphorylation of STAT3, and in some cases, with phosphorylated p70S6 kinase and Erk1/2. Cumulatively, these data indicate that GDEs are secreted GBM-released factors that are potent modulators of the GBM-associated immunosuppressive microenvironment.

4.
Methods Mol Biol ; 1441: 57-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27177656

RESUMO

Natural killer (NK) cells are a subset of cytotoxic lymphocytes that play a critical role in innate immune surveillance against infections and tumors through cytokine secretion and target cell lysis. NK cells function without any need for prior antigen exposure. Thus, more recently NK cells are considered a promising source of lymphocytes for adoptive tumor therapy. However, because NK cells represent only a small lymphocyte fraction, expand poorly ex vivo, and have limited life spans, clinical scale generation of NK cells for tumor immunotherapy was a challenging issue. To overcome this challenge, numerous expansion platforms have been developed. However, ex vivo expansion of NK cells could lead to proliferation-induced senescence. Telomeres at the end of chromosomes play a crucial role in maintaining the integrity of the chromosome and are lost at each cell division in somatic cells and have emerged as important cellular elements in aging and cancer. Because telomere length is known to decrease in adult human NK cells and is associated with proliferation-induced senescence, it is important to determine the effect of NK cell expansion systems on telomere length. In this chapter, a detailed protocol is provided to analyze the telomere length of expanded NK cells using a commercially available Flow FISH kit.


Assuntos
Células Matadoras Naturais/citologia , Telômero/metabolismo , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Células K562 , Homeostase do Telômero
5.
Oncoimmunology ; 5(11): e1232220, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999743

RESUMO

The B-cell receptor (BCR) expressed by a clonal B cell tumor is a tumor specific antigen (idiotype). However, the T-cell epitopes within human BCRs which stimulate protective immunity still lack detailed characterization. In this study, we identified 17 BCR peptide-specific CD4+ T-cell epitopes derived from BCR heavy and light chain variable region sequences. Detailed analysis revealed these CD4+ T-cell epitopes stimulated normal donors' and patients' Th1 CD4+ T cells to directly recognize the autologous tumors by secretion of IFNγ, indicating the epitopes are processed and presented by tumor cells. One BCR peptide-specific CD4+ T cell line was also cytotoxic and lysed autologous tumor cells through the perforin pathway. Sequence analysis of the epitopes revealed that 10 were shared by multiple primary patients' tumors, and 16 had the capacity to bind to more than one HLA DRB1 allele. T cells stimulated by shared epitopes recognized primary tumors expressing the same sequences on multiple HLA DRB1 alleles. In conclusion, we identified 17 BCR-derived CD4+ T-cell epitopes with promiscuous HLA DRB1 binding affinity that are shared by up to 36% of patients, suggesting a strategy to overcome the requirement for individual preparation of therapeutic agents targeting idiotype.

6.
Elife ; 5: e10250, 2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-26920219

RESUMO

Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.


Assuntos
Exossomos , Fibroblastos/metabolismo , Glucose/metabolismo , Neoplasias/fisiopatologia , Microambiente Tumoral , Exossomos/metabolismo , Fermentação , Glicólise , Ácido Láctico/metabolismo , Fosforilação Oxidativa
7.
JCI Insight ; 1(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973881

RESUMO

Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages.

8.
Nat Commun ; 7: 11169, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27041221

RESUMO

A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Redes Reguladoras de Genes , Proteínas de Homeodomínio/fisiologia , Neoplasias Renais/genética , MicroRNAs/fisiologia , Neovascularização Patológica/genética , Neoplasias Ovarianas/genética , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Terapia Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/terapia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/terapia , Fosfatidilcolinas , Carga Tumoral
10.
JCI Insight ; 1(17): e87754, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27777972

RESUMO

Current antiangiogenesis therapy relies on inhibiting newly developed immature tumor blood vessels and starving tumor cells. This strategy has shown transient and modest efficacy. Here, we report a better approach to target cancer-associated endothelial cells (ECs), reverse permeability and leakiness of tumor blood vessels, and improve delivery of chemotherapeutic agents to the tumor. First, we identified deregulated microRNAs (miRs) from patient-derived cancer-associated ECs. Silencing these miRs led to decreased vascular permeability and increased maturation of blood vessels. Next, we screened a thioaptamer (TA) library to identify TAs selective for tumor-associated ECs. An annexin A2-targeted TA was identified and used for delivery of miR106b-5p and miR30c-5p inhibitors, resulting in vascular maturation and antitumor effects without inducing hypoxia. These findings could have implications for improving vascular-targeted therapy.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos , Células Endoteliais/citologia , MicroRNAs/administração & dosagem , Neovascularização Patológica/prevenção & controle , Linhagem Celular Tumoral , Humanos , Nanopartículas , Neoplasias/irrigação sanguínea , Neoplasias/terapia , Transfecção
11.
Clin Cancer Res ; 21(14): 3241-51, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25829402

RESUMO

PURPOSE: The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. EXPERIMENTAL DESIGN: Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. RESULTS: We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. CONCLUSIONS: Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors.


Assuntos
Terapia Genética/métodos , Imunoterapia Adotiva/métodos , Melanoma/virologia , Linfócitos T/transplante , Proteínas Virais/imunologia , Animais , Engenharia Genética/métodos , Humanos , Imuno-Histoquímica , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS One ; 10(6): e0128151, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030772

RESUMO

T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.


Assuntos
Elementos de DNA Transponíveis/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interferon gama/biossíntese , Leucemia/imunologia , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Fenótipo , Linfócitos T/citologia , Linfócitos T/imunologia , Transcrição Gênica
13.
Nat Commun ; 5: 4577, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25099679

RESUMO

Characterizing the genetic alterations leading to the more aggressive forms of oestrogen receptor-positive (ER+) breast cancers is of critical significance in breast cancer management. Here we identify recurrent rearrangements between the oestrogen receptor gene ESR1 and its neighbour CCDC170, which are enriched in the more aggressive and endocrine-resistant luminal B tumours, through large-scale analyses of breast cancer transcriptome and copy number alterations. Further screening of 200 ER+ breast cancers identifies eight ESR1-CCDC170-positive tumours. These fusions encode amino-terminally truncated CCDC170 proteins (ΔCCDC170). When introduced into ER+ breast cancer cells, ΔCCDC170 leads to markedly increased cell motility and anchorage-independent growth, reduced endocrine sensitivity and enhanced xenograft tumour formation. Mechanistic studies suggest that ΔCCDC170 engages Gab1 signalosome to potentiate growth factor signalling and enhance cell motility. Together, this study identifies neoplastic ESR1-CCDC170 fusions in a more aggressive subset of ER+ breast cancer, which suggests a new concept of ER pathobiology in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Transporte/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Separação Celular , Receptor alfa de Estrogênio/metabolismo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Fases de Leitura Aberta , Fenótipo , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
14.
Clin Cancer Res ; 20(22): 5708-19, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24833662

RESUMO

PURPOSE: To activate and propagate populations of γδ T cells expressing polyclonal repertoire of γ and δ T-cell receptor (TCR) chains for adoptive immunotherapy of cancer, which has yet to be achieved. EXPERIMENTAL DESIGN: Clinical-grade artificial antigen-presenting cells (aAPC) derived from K562 tumor cells were used as irradiated feeders to activate and expand human γδ T cells to clinical scale. These cells were tested for proliferation, TCR expression, memory phenotype, cytokine secretion, and tumor killing. RESULTS: γδ T-cell proliferation was dependent upon CD137L expression on aAPC and addition of exogenous IL2 and IL21. Propagated γδ T cells were polyclonal as they expressed TRDV1, TRDV2-2, TRDV3, TRDV5, TRDV7, and TRDV8 with TRGV2, TRGV3F, TRGV7, TRGV8, TRGV9*A1, TRGV10*A1, and TRGV11 TCR chains. IFNγ production by Vδ1, Vδ2, and Vδ1(neg)Vδ2(neg) subsets was inhibited by pan-TCRγδ antibody when added to cocultures of polyclonal γδ T cells and tumor cell lines. Polyclonal γδ T cells killed acute and chronic leukemia, colon, pancreatic, and ovarian cancer cell lines, but not healthy autologous or allogeneic normal B cells. Blocking antibodies demonstrated that polyclonal γδ T cells mediated tumor cell lysis through combination of DNAM1, NKG2D, and TCRγδ. The adoptive transfer of activated and propagated γδ T cells expressing polyclonal versus defined Vδ TCR chains imparted a hierarchy (polyclonal>Vδ1>Vδ1(neg)Vδ2(neg)>Vδ2) of survival of mice with ovarian cancer xenografts. CONCLUSIONS: Polyclonal γδ T cells can be activated and propagated with clinical-grade aAPCs and demonstrate broad antitumor activities, which will facilitate the implementation of γδ T-cell cancer immunotherapies in humans.


Assuntos
Ativação Linfocitária/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transferência Adotiva , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Citocinas/biossíntese , Citocinas/farmacologia , Modelos Animais de Doenças , Expressão Gênica , Humanos , Interferon gama/biossíntese , Camundongos , Camundongos Transgênicos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/mortalidade , Neoplasias/terapia , RNA Mensageiro , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Immunother ; 36(2): 112-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23377665

RESUMO

The Sleeping Beauty (SB) transposon/transposase DNA plasmid system is used to genetically modify cells for long-term transgene expression. We adapted the SB system for human application and generated T cells expressing a chimeric antigen receptor (CAR) specific for CD19. Electrotransfer of CD19-specific SB DNA plasmids in peripheral blood mononuclear cells and propagation on CD19 artificial antigen presenting cells was used to numerically expand CD3 T cells expressing CAR. By day 28 of coculture, >90% of expanded CD3 T cells expressed CAR. CAR T cells specifically killed CD19 target cells and consisted of subsets expressing biomarkers consistent with central memory, effector memory, and effector phenotypes. CAR T cells contracted numerically in the absence of the CD19 antigen, did not express SB11 transposase, and maintained a polyclonal TCR Vα and TCR Vß repertoire. Quantitative fluorescence in situ hybridization revealed that CAR T cells preserved the telomere length. Quantitative polymerase chain reaction and fluorescence in situ hybridization showed CAR transposon integrated on average once per T-cell genome. CAR T cells in peripheral blood can be detected by quantitative polymerase chain reaction at a sensitivity of 0.01%. These findings lay the groundwork as the basis of our first-in-human clinical trials of the nonviral SB system for the investigational treatment of CD19 B-cell malignancies (currently under 3 INDs: 14193, 14577, and 14739).


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Linfócitos T/transplante , Transposases/genética , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Eletroporação , Técnicas de Transferência de Genes , Glioblastoma/imunologia , Glioblastoma/terapia , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/biossíntese
17.
PLoS One ; 7(1): e30264, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22279576

RESUMO

NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21-expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomeres and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy.


Assuntos
Proliferação de Células , Interleucinas/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Membrana/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Artificiais/imunologia , Células Artificiais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Imunoterapia Adotiva/métodos , Interleucina-15/imunologia , Interleucina-15/metabolismo , Interleucinas/metabolismo , Células K562 , Células Matadoras Naturais/metabolismo , Proteínas de Membrana/metabolismo , Receptores KIR/imunologia , Receptores KIR/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Telômero/genética , Células U937
18.
Hum Gene Ther ; 21(4): 427-37, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19905893

RESUMO

Nonviral integrating vectors can be used for expression of therapeutic genes. piggyBac (PB), a transposon/transposase system, has been used to efficiently generate induced pluripotent stems cells from somatic cells, without genetic alteration. In this paper, we apply PB transposition to express a chimeric antigen receptor (CAR) in primary human T cells. We demonstrate that T cells electroporated to introduce the PB transposon and transposase stably express CD19-specific CAR and when cultured on CD19(+) artificial antigen-presenting cells, numerically expand in a CAR-dependent manner, display a phenotype associated with both memory and effector T cell populations, and exhibit CD19-dependent killing of tumor targets. Integration of the PB transposon expressing CAR was not associated with genotoxicity, based on chromosome analysis. PB transposition for generating human T cells with redirected specificity to a desired target such as CD19 is a new genetic approach with therapeutic implications.


Assuntos
Antígenos CD19/metabolismo , Elementos de DNA Transponíveis , Linfoma de Células B/terapia , Receptores de Antígenos/genética , Linfócitos T/imunologia , Transposases , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/imunologia , Eletroporação , Terapia Genética/métodos , Vetores Genéticos , Glioblastoma , Humanos , Células K562 , Plasmídeos , Receptores de Antígenos/metabolismo , Linfócitos T/metabolismo , Transgenes , Transposases/genética , Transposases/imunologia
19.
J Biol Chem ; 283(7): 3761-6, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18073216

RESUMO

The recognition and removal of apoptotic cells is critical to development, tissue homeostasis, and the resolution of inflammation. Many studies have shown that phagocytosis is regulated by signaling mechanisms that involve distinct ligand-receptor interactions that drive the engulfment of apoptotic cells. Studies from our laboratory have shown that the plasma protein beta-2-glycoprotein 1 (beta2GP1), a member of the short consensus repeat superfamily, binds phosphatidylserine-containing vesicles and apoptotic cells and promotes their bridging and subsequent engulfment by phagocytes. The phagocyte receptor for the protein/apoptotic cell complex, however, is unknown. Here we report that a member of the low density lipoprotein receptor-related protein family on phagocytes binds and facilitates engulfment of beta2GP1-phosphatidylserine and beta2GP1-apoptotic cell complexes. Using recombinant beta2GP1, we also show that beta2GP1-dependent uptake is mediated by bridging of the target cell to the phagocyte through the protein C- and N-terminal domains, respectively.


Assuntos
Apoptose , Macrófagos/fisiologia , Receptores de LDL/metabolismo , beta 2-Glicoproteína I/fisiologia , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Fagocitose
20.
Biochemistry ; 46(37): 10612-20, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17715943

RESUMO

Beta2-glycoprotein 1 (beta2GP1), a 50 kDa serum glycoprotein that binds anionic phospholipid-containing membranes, plays a regulatory role in physiology and pathology. The protein is a member of the short consensus repeat (SCR) superfamily containing four typical repeating domains and an aberrant fifth domain constructed into an SCR-like core at the C-terminus. To investigate the contribution of the individual domains to the binding of beta2GP1, a series of sequential domain-deleted recombinant protein fragments were generated and assessed for their interaction with PS-containing vesicles. Spectral analyses of lipid binding-dependent alterations in tryptophan emission spectra revealed that the (single) tryptophan residues of the individual domains underwent binding-dependent conformational alterations. Depending on the ionic strength, some domains moved from polar to nonpolar environments, while others moved from less polar to more polar environments. Analysis of a series of acrylamide quenching and resonance energy transfer experiments indicated that the binding of N-terminal domain 1 to PS membranes exists in two, ionic strength-dependent, conformations. At low ionic strengths, domain 1 bound to the vesicles and induced their precipitation and/or aggregation. At physiologic ionic strengths, domain 1 detached from the membrane surface while the remaining domains maintained their association with the membrane. Under these conditions, membrane-bound conformationally altered domain 1 projects away from the membrane surface, enabling it to interact with other proteins and/or cell surface ligands or receptors.


Assuntos
Fosfatidilserinas/metabolismo , Lipossomas Unilamelares/metabolismo , beta 2-Glicoproteína I/química , beta 2-Glicoproteína I/metabolismo , Animais , Bovinos , Precipitação Química , Eletroforese em Gel de Poliacrilamida , Transferência de Energia , Humanos , Cinética , Ligantes , Fosfatidilcolinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Relação Estrutura-Atividade , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA