Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(10): 4419-4429, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36696687

RESUMO

Multicomponent self-assembly offers opportunities for the design of complex and functional biomaterials with tunable properties. Here, we demonstrate how minor modifications in the molecular structures of peptide amphiphiles (PAs) and elastin-like recombinamers (ELs) can be used to generate coassembling tubular membranes with distinct structures, properties, and bioactivity. First, by introducing minor modifications in the charge density of PA molecules (PAK2, PAK3, PAK4), different diffusion-reaction processes can be triggered, resulting in distinct membrane microstructures. Second, by combining different types of these PAs prior to their coassembly with ELs, further modifications can be achieved, tuning the structures and properties of the tubular membranes. Finally, by introducing the cell adhesive peptide RGDS in either the PA or EL molecules, it is possible to harness the different diffusion-reaction processes to generate tubular membranes with distinct bioactivities. The study demonstrates the possibility to trigger and achieve minor but crucial differences in coassembling processes and tune material structure and bioactivity. The study demonstrates the possibility to use minor, yet crucial, differences in coassembling processes to tune material structure and bioactivity.


Assuntos
Materiais Biocompatíveis , Peptídeos , Peptídeos/química , Estrutura Molecular
2.
Radiology ; 294(2): 421-431, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31793848

RESUMO

BackgroundDeep learning has the potential to augment the use of chest radiography in clinical radiology, but challenges include poor generalizability, spectrum bias, and difficulty comparing across studies.PurposeTo develop and evaluate deep learning models for chest radiograph interpretation by using radiologist-adjudicated reference standards.Materials and MethodsDeep learning models were developed to detect four findings (pneumothorax, opacity, nodule or mass, and fracture) on frontal chest radiographs. This retrospective study used two data sets. Data set 1 (DS1) consisted of 759 611 images from a multicity hospital network and ChestX-ray14 is a publicly available data set with 112 120 images. Natural language processing and expert review of a subset of images provided labels for 657 954 training images. Test sets consisted of 1818 and 1962 images from DS1 and ChestX-ray14, respectively. Reference standards were defined by radiologist-adjudicated image review. Performance was evaluated by area under the receiver operating characteristic curve analysis, sensitivity, specificity, and positive predictive value. Four radiologists reviewed test set images for performance comparison. Inverse probability weighting was applied to DS1 to account for positive radiograph enrichment and estimate population-level performance.ResultsIn DS1, population-adjusted areas under the receiver operating characteristic curve for pneumothorax, nodule or mass, airspace opacity, and fracture were, respectively, 0.95 (95% confidence interval [CI]: 0.91, 0.99), 0.72 (95% CI: 0.66, 0.77), 0.91 (95% CI: 0.88, 0.93), and 0.86 (95% CI: 0.79, 0.92). With ChestX-ray14, areas under the receiver operating characteristic curve were 0.94 (95% CI: 0.93, 0.96), 0.91 (95% CI: 0.89, 0.93), 0.94 (95% CI: 0.93, 0.95), and 0.81 (95% CI: 0.75, 0.86), respectively.ConclusionExpert-level models for detecting clinically relevant chest radiograph findings were developed for this study by using adjudicated reference standards and with population-level performance estimation. Radiologist-adjudicated labels for 2412 ChestX-ray14 validation set images and 1962 test set images are provided.© RSNA, 2019Online supplemental material is available for this article.See also the editorial by Chang in this issue.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Torácica/métodos , Doenças Respiratórias/diagnóstico por imagem , Traumatismos Torácicos/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Aprendizado Profundo , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Pneumotórax , Radiologistas , Padrões de Referência , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
3.
Br J Nutr ; 118(3): 169-178, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28831956

RESUMO

Two types of diet - standard and atherogenic - were used to study the effect of wheat or wheat-rye breads supplemented with 20 % acid whey concentrate after ultrafiltration on the physiological response of growing rats. The acid whey concentrate after ultrafiltration used in rat diets caused reduced weight gain (for atherogenic diet with wheat bread); growth of caecum tissue and digesta weight; a decrease in the pH of caecum digesta (for atherogenic diet); reduced activity of bacterial glycolytic enzymes; and a significant increase in total SCFA for both types of diet with wheat-rye breads containing acid whey concentrate. For wheat bread with acid whey, in standard diet, a statistically significant increase was found in the population of bifidobacteria. The results showed that the acid whey concentrates could be used as a valuable food ingredient.


Assuntos
Pão/análise , Ceco/metabolismo , Alimentos Fortificados , Soro do Leite/química , Animais , Bifidobacterium/metabolismo , Peso Corporal , Ceco/microbiologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Contagem de Colônia Microbiana , Dieta Aterogênica , Dieta Hiperlipídica , Ácidos Graxos Voláteis/metabolismo , Fermentação , Microbioma Gastrointestinal , Masculino , Modelos Animais , Ratos , Ratos Wistar , Secale/química , Triglicerídeos/sangue , Triticum/química
4.
ACS Appl Mater Interfaces ; 14(1): 464-473, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941264

RESUMO

Molecular self-assembly is a spontaneous natural process resulting in highly ordered nano to microarchitectures. We report temperature-independent formation of robust stable membranes obtained by the spontaneous interaction of intrinsically disordered elastin-like polypeptides (ELPs) with short aromatic peptides at temperatures both below and above the conformational transition temperature of the ELPs. The membranes are stable over time and display durability over a wide range of parameters including temperature, pH, and ultrasound energy. The morphology and composition of the membranes were analyzed using microscopy. These robust structures support preosteoblast cell adhesion and proliferation as well as pH-dependent cargo release. Simple noncovalent interactions with short aromatic peptides can overcome conformational restrictions due to the phase transition to facilitate the formation of complex bioactive scaffolds that are stable over a wide range of environmental parameters. This approach offers novel possibilities for controlling the conformational restriction of intrinsically disordered proteins and using them in the design of new materials.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Peptídeos/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Tamanho da Partícula , Conformação Proteica , Estabilidade Proteica
5.
Acta Biomater ; 58: 80-89, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28528863

RESUMO

The ability to guide molecular self-assembly at the nanoscale into complex macroscopic structures could enable the development of functional synthetic materials that exhibit properties of natural tissues such as hierarchy, adaptability, and self-healing. However, the stability and structural integrity of these kinds of materials remains a challenge for many practical applications. We have recently developed a dynamic biopolymer-peptide co-assembly system with the capacity to grow and undergo morphogenesis into complex shapes. Here we explored the potential of different synthetic (succinimidyl carboxymethyl ester, poly (ethylene glycol) ether tetrasuccinimidyl glutarate and glutaraldehyde) and natural (genipin) cross-linking agents to stabilize membranes made from these biopolymer-peptide co-assemblies. We investigated the cross-linking efficiency, resistance to enzymatic degradation, and mechanical properties of the different cross-linked membranes. We also compared their biocompatibility by assessing the metabolic activity and morphology of adipose-derived stem cells (ADSC) cultured on the different membranes. While all cross-linkers successfully stabilized the system under physiological conditions, membranes cross-linked with genipin exhibited better resistance in physiological environments, improved stability under enzymatic degradation, and a higher degree of in vitro cytocompatibility compared to the other cross-linking agents. The results demonstrated that genipin is an attractive candidate to provide functional structural stability to complex self-assembling structures for potential tissue engineering or in vitro model applications. STATEMENT OF SIGNIFICANCE: Molecular self-assembly is widely used for the fabrication of complex functional biomaterials to replace and/or repair any tissue or organ in the body. However, maintaining the stability and corresponding functionality of these kinds of materials in physiological conditions remains a challenge. Chemical cross-linking strategies (natural or synthetic) have been used in an effort to improve their structural integrity. Here we investigate key performance parameters of different cross-linking strategies for stabilising self-assembled materials with potential biomedical applications using a novel protein-peptide co-assembling membrane as proof-of-concept. From the different cross-linkers tested, the natural cross-linker genipin exhibited the best performance. This cross-linker successfully enhanced the mechanical properties of the system enabling the maintenance of the structure in physiological conditions without compromising its bioactivity and biocompatibility. Altogether, we provide a systematic characterization of cross-linking alternatives for self-assembling materials focused on biocompatibility and stability and demonstrate that genipin is a promising alternative for the cross-linking of such materials with a wide variety of potential applications such as in tissue engineering and drug delivery.


Assuntos
Tecido Adiposo/química , Tecido Adiposo/metabolismo , Reagentes de Ligações Cruzadas/química , Iridoides , Peptídeos , Células-Tronco/química , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Iridoides/química , Iridoides/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA