Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638673

RESUMO

Steroid-associated osteonecrosis (SAON) is a chronic disease that leads to the destruction and collapse of bone near the joint that is subjected to weight bearing, ultimately resulting in a loss of hip and knee function. Zn2+ ions, as an essential trace element, have functional roles in improving the immunophysiological cellular environment, accelerating bone regeneration, and inhibiting biofilm formation. In this study, we reconstruct SAON lesions with a three-dimensional (3D)-a printed composite made of poly (epsilon-caprolactone) (PCL) and nanoparticulate Willemite (npW). Rabbit bone marrow stem cells were used to evaluate the cytocompatibility and osteogenic differentiation capability of the PCL/npW composite scaffolds. The 2-month bone regeneration was assessed by a Micro-computed tomography (micro-CT) scan and the expression of bone regeneration proteins by Western blot. Compared with the neat PCL group, PCL/npW scaffolds exhibited significantly increased cytocompatibility and osteogenic activity. This finding reveals a new concept for the design of a 3D-printed PCL/npW composite-based bone substitute for the early treatment of osteonecrosis defects.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Nanopartículas/administração & dosagem , Osteogênese/efeitos dos fármacos , Poliésteres/farmacologia , Alicerces Teciduais/química , Animais , Caproatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Lactonas/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteonecrose/tratamento farmacológico , Impressão Tridimensional , Coelhos , Silicatos/farmacologia , Engenharia Tecidual/métodos , Microtomografia por Raio-X/métodos , Compostos de Zinco/farmacologia
2.
Photodiagnosis Photodyn Ther ; 27: 442-448, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31362112

RESUMO

Current methods for determining the cellular effects of a treatment modality need expensive materials and much time to provide a researcher with results. The aim of this study was to evaluate the potential of nonlinear optical characteristics of cancer cells using Z-scan technique to monitor the level of cellular uptake and cell damage caused by a nanotechnology based treatment modality. Two nanocomplexes were synthesized and characterized. The first one was made of alginate hydrogel co-loaded with cisplatin and gold nanoparticles (AuNPs) named as ACA nanocomplex. The second one, named as AA nanocomplex, was the same as ACA, but without cisplatin and this AA nanocomplex was considered as the control for ACA. Different groups of CT26 mouse colon cancer cell line received various treatments of cisplatin, ACA, and AA nanocomplexes and then the samples were prepared for Z-scan studies. The MTT assay was used to evaluate the cytotoxicity induced by different treatment modalities. Transmission electron microscopy (TEM) and inductively coupled plasma-mass spectrometry (ICP-MS) were used for qualitative and quantitative assessments of the level of AuNPs cellular uptake. The trend of nonlinear optical properties changes for treated cells was in agreement with MTT, TEM and ICP-MS results. Z-scan technique was able to successfully indicate the occurrence of cell damage. It was also capable to determine the intensity of cell damage induced by ACA nanocomplex in comparison to free cisplatin. Furthermore, Z-scan results showed that it was able to discriminate the differences of optical properties of the cells incubated with ACA nanocomplex for various incubation times. Nonlinear optical characteristics of a cell may be considered as a reliable indicator to predict the level of cellular effects induced by a nanotechnology based treatment modality. The protocol suggested in this article does not waste materials, not take much time to provide the results, and it is inexpensive technique.


Assuntos
Alginatos/química , Cisplatino/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Tomografia Óptica/métodos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Lasers , Camundongos , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA