Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669183

RESUMO

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Assuntos
Proteínas de Transporte , Polaridade Celular , Proteínas de Membrana , Coluna Vertebral , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Humanos , Camundongos , Polaridade Celular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Coluna Vertebral/anormalidades , Coluna Vertebral/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Escoliose/genética , Escoliose/congênito , Escoliose/metabolismo , Via de Sinalização Wnt/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Feminino
2.
Virol J ; 20(1): 65, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041586

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide pandemic with over 627 million cases and over 6.5 million deaths. It was reported that smoking-related chronic obstructive pulmonary disease (COPD) might be a crucial risk for COVID-19 patients to develop severe condition. As cigarette smoke (CS) is the major risk factor for COPD, we hypothesize that barrier dysfunction and an altered cytokine response in CS-exposed airway epithelial cells may contribute to increased SARS-CoV-2-induced immune response that may result in increased susceptibility to severe disease. The aim of this study was to evaluate the role of CS on SARS-CoV-2-induced immune and inflammatory responses, and epithelial barrier integrity leading to airway epithelial damage. METHODS: Primary human airway epithelial cells were differentiated under air-liquid interface culture. Cells were then exposed to cigarette smoke medium (CSM) before infection with SARS-CoV-2 isolated from a local patient. The infection susceptibility, morphology, and the expression of genes related to host immune response, airway inflammation and damages were evaluated. RESULTS: Cells pre-treated with CSM significantly caused higher replication of SARS-CoV-2 and more severe SARS-CoV-2-induced cellular morphological alteration. CSM exposure caused significant upregulation of long form angiotensin converting enzyme (ACE)2, a functional receptor for SARS-CoV-2 viral entry, transmembrane serine protease (TMPRSS)2 and TMPRSS4, which cleave the spike protein of SARS-CoV-2 to allow viral entry, leading to an aggravated immune response via inhibition of type I interferon pathway. In addition, CSM worsened SARS-CoV-2-induced airway epithelial cell damage, resulting in severe motile ciliary disorder, junctional disruption and mucus hypersecretion. CONCLUSION: Smoking led to dysregulation of host immune response and cell damage as seen in SARS-CoV-2-infected primary human airway epithelia. These findings may contribute to increased disease susceptibility with severe condition and provide a better understanding of the pathogenesis of SARS-CoV-2 infection in smokers.


Assuntos
COVID-19 , Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , SARS-CoV-2 , Sistema Respiratório
3.
J Allergy Clin Immunol ; 149(4): 1445-1457.e5, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34624393

RESUMO

BACKGROUND: Orosomucoid 1-like protein 3 (ORMDL3), a transmembrane protein localized in the endoplasmic reticulum (ER), has been genetically associated with chronic obstructive pulmonary disease (COPD), in addition to childhood-onset asthma. However, the functional role of ORMDL3 in the pathogenesis of COPD is still unknown. OBJECTIVE: Because cigarette smoke is the major risk factor for COPD, we aimed to investigate the role of ORMDL3 in cigarette smoke-induced human airway smooth muscle cell (HASMC) injury. METHODS: The mRNA and protein expression of ORMDL3 was examined in HASMCs from nonsmokers and smokers without or with COPD. Knockdown of ORMDL3 in primary healthy HASMCs was performed using small interfering RNA before exposure to cigarette smoke medium (CSM) for 24 hours. Inflammatory, proliferative/apoptotic, ER stress, and mitochondrial markers were evaluated. RESULTS: Elevation of ORMDL3 mRNA and protein expression was observed in HASMCs of smokers without or with COPD. CSM caused significant upregulation of ORMDL3 expression in healthy nonsmokers. ORMDL3 knockdown regulated CSM-induced inflammation, cell proliferation, and apoptosis. Silencing ORMDL3 led to reduction of CSM-induced ER stress via inhibition of unfolded protein response pathways such as activating transcription factor 6 and protein kinase RNA-like ER kinase. ORMDL3 was also involved in CSM-induced mitochondrial dysfunction via the mitochondrial fission process. CONCLUSIONS: We report the induction of ORMDL3 in HASMCs after cigarette smoke exposure. ORMDL3 may mediate cigarette smoke-induced activation of unfolded protein response pathways during airway smooth muscle cell injury.


Assuntos
Asma , Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Asma/metabolismo , Criança , Fumar Cigarros/efeitos adversos , Estresse do Retículo Endoplasmático , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , RNA Mensageiro/metabolismo , Nicotiana
4.
Am J Respir Cell Mol Biol ; 67(4): 471-481, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35763375

RESUMO

Mitochondrial dysfunction has been reported in chronic obstructive pulmonary disease (COPD). Transfer of mitochondria from mesenchymal stem cells to airway smooth muscle cells (ASMCs) can attenuate oxidative stress-induced mitochondrial damage. It is not known whether mitochondrial transfer can occur between structural cells in the lungs or what role this may have in modulating bioenergetics and cellular function in healthy and COPD airways. Here, we show that ASMCs from both healthy ex-smokers and subjects with COPD can exchange mitochondria, a process that happens, at least partly, via extracellular vesicles. Exposure to cigarette smoke induces mitochondrial dysfunction and leads to an increase in the donation of mitochondria by ASMCs, suggesting that the latter may be a stress response mechanism. Healthy ex-smoker ASMCs that receive mitochondria show increases in mitochondrial biogenesis and respiration and a reduction in cell proliferation, irrespective of whether the mitochondria are transferred from healthy ex-smoker or COPD ASMCs. Our data indicate that mitochondrial transfer between structural cells is a homeostatic mechanism for the regulation of bioenergetics and cellular function within the airways and may represent an endogenous mechanism for reversing the functional consequences of mitochondrial dysfunction in diseases such as COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Metabolismo Energético , Humanos , Pulmão/metabolismo , Mitocôndrias/metabolismo , Músculo Liso , Doença Pulmonar Obstrutiva Crônica/metabolismo
5.
Sleep Breath ; 24(3): 817-824, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31372823

RESUMO

PURPOSE: The circulating level of adipocyte fatty acid-binding protein (AFABP), a biomarker with prognostic and therapeutic importance in metabolic disorders, has been shown to be elevated in obstructive sleep apnea (OSA). This randomized controlled study aimed to investigate the effect of continuous positive airway pressure (CPAP) treatment for OSA on AFABP levels. METHODS: Consecutive subjects attending sleep study were invited if they were confirmed to have severe OSA and were free of metabolic diseases. Participants were randomized (1:1) into CPAP or observation group for 4 weeks. Demographics, anthropometric data, and circulating biomarkers were checked at baseline and after the 4-week study period. RESULTS: Ninety subjects were randomized. The mean age was 46 ± 9 years old; 82% were male. Their mean body mass index (BMI) was 29 ± 5 kg/m2. By intention-to-treat approach, the CPAP group showed significant reductions in Epworth sleepiness scale and morning systolic blood pressure (- 7.2 mmHg, - 12.7 to - 1.7 mmHg, p = 0.011), but no significant difference in AFABP, adiponectin, C-reactive protein (CRP), and 8-isoprostane levels. In the per-protocol analysis, when only those who were compliant to CPAP were included, a significant reduction in AFABP (- 7.32 ng/ml, - 13.58, - 1.06, p = 0.023) were found in the CPAP-treated group compared with the control group, along with improvements in clinical parameters. Changes in AFABP were independently associated with both systolic blood pressure (ß = 0.289, p = 0.028) and diastolic blood pressure (ß = 0.217, p = 0.030). CONCLUSION: CPAP therapy used regularly over 4 weeks for severe OSA lowered circulating AFABP level, suggesting a potential beneficial effect of OSA treatment on alleviating metabolic risks. TRIAL REGISTRATION: The research protocol was registered at the National Institutes of Health clinical trials registry (NCT01173432).


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/métodos , Proteínas de Ligação a Ácido Graxo/sangue , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/terapia , Sono/fisiologia , Adulto , Biomarcadores/sangue , Pressão Sanguínea/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
6.
J Allergy Clin Immunol ; 141(5): 1634-1645.e5, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28911970

RESUMO

BACKGROUND: Oxidative stress-induced mitochondrial dysfunction can contribute to inflammation and remodeling in patients with chronic obstructive pulmonary disease (COPD). Mesenchymal stem cells protect against lung damage in animal models of COPD. It is unknown whether these effects occur through attenuating mitochondrial dysfunction in airway cells. OBJECTIVE: We sought to examine the effect of induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) on oxidative stress-induce mitochondrial dysfunction in human airway smooth muscle cells (ASMCs) in vitro and in mouse lungs in vivo. METHODS: ASMCs were cocultured with iPSC-MSCs in the presence of cigarette smoke medium (CSM), and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis were measured. Conditioned medium from iPSC-MSCs and transwell cocultures were used to detect any paracrine effects. The effect of systemic injection of iPSC-MSCs on airway inflammation and hyperresponsiveness in ozone-exposed mice was also investigated. RESULTS: Coculture of iPSC-MSCs with ASMCs attenuated CSM-induced mitochondrial ROS, apoptosis, and ΔΨm loss in ASMCs. iPSC-MSC-conditioned medium or transwell cocultures with iPSC-MSCs reduced CSM-induced mitochondrial ROS but not ΔΨm or apoptosis in ASMCs. Mitochondrial transfer from iPSC-MSCs to ASMCs was observed after direct coculture and was enhanced by CSM. iPSC-MSCs attenuated ozone-induced mitochondrial dysfunction, airway hyperresponsiveness, and inflammation in mouse lungs. CONCLUSION: iPSC-MSCs offered protection against oxidative stress-induced mitochondrial dysfunction in human ASMCs and in mouse lungs while reducing airway inflammation and hyperresponsiveness. These effects are, at least in part, dependent on cell-cell contact, which allows for mitochondrial transfer, and paracrine regulation. Therefore iPSC-MSCs show promise as a therapy for oxidative stress-dependent lung diseases, such as COPD.


Assuntos
Pulmão/patologia , Células-Tronco Mesenquimais/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Estresse Oxidativo/fisiologia , Animais , Apoptose/fisiologia , Técnicas de Cocultura/métodos , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Nicotiana/efeitos adversos
7.
J Cell Mol Med ; 22(5): 2717-2726, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512942

RESUMO

Obstructive sleep apnoea (OSA) characterized by intermittent hypoxia (IH) is closely associated with cardiovascular diseases. IH confers cardiac injury via accelerating cardiomyocyte apoptosis, whereas the underlying mechanism has remained largely enigmatic. This study aimed to explore the potential mechanisms involved in the IH-induced cardiac damage performed with the IH-exposed cell and animal models and to investigate the protective effects of haemin, a potent haeme oxygenase-1 (HO-1) activator, on the cardiac injury induced by IH. Neonatal rat cardiomyocyte (NRC) was treated with or without haemin before IH exposure. Eighteen male Sprague-Dawley (SD) rats were randomized into three groups: control group, IH group (PBS, ip) and IH + haemin group (haemin, 4 mg/kg, ip). The cardiac function was determined by echocardiography. Mitochondrial fission was evaluated by Mitotracker staining. The mitochondrial dynamics-related proteins (mitochondrial fusion protein, Mfn2; mitochondrial fission protein, Drp1) were determined by Western blot. The apoptosis of cardiomyocytes and heart sections was examined by TUNEL. IH regulated mitochondrial dynamics-related proteins (decreased Mfn2 and increased Drp1 expressions, respectively), thereby leading to mitochondrial fragmentation and cell apoptosis in cardiomyocytes in vitro and in vivo, while haemin-induced HO-1 up-regulation attenuated IH-induced mitochondrial fragmentation and cell apoptosis. Moreover, IH resulted in left ventricular hypertrophy and impaired contractile function in vivo, while haemin ameliorated IH-induced cardiac dysfunction. This study demonstrates that pharmacological activation of HO-1 pathway protects against IH-induced cardiac dysfunction and myocardial fibrosis through the inhibition of mitochondrial fission and cell apoptosis.


Assuntos
Hemina/farmacologia , Hipóxia/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Heme Oxigenase-1/metabolismo , Masculino , Modelos Biológicos , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley
8.
Lipids Health Dis ; 17(1): 255, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30428911

RESUMO

BACKGROUND: Lipid dysregulation is a classical risk factor for cardiovascular disease (CVD), yet scanty evidence existed regarding cardiac lipid metabolism that is directly related to heart damage. Recently, the relationship between dyslipidemia and pro-inflammatory insults has led to further understanding on the CVD-predisposing effects of dyslipidemia. The aims of the present study were to investigate whether high-fat high-cholesterol (HFHC) diet-induced hyperlipidemia would cause heart damage and to study the potential role of local cardiac lipid dysregulation in the occurrence of cellular injury. METHODS: Male Sprague-Dawley rats were divided into normal chow or HFHC diet groups, and sacrificed after 2 or 4 weeks, respectively. Lipid peroxidation marker level was measured. Lipid parameters in the rat hearts were detected. Cardiac damage was evaluated. RESULTS: HFHC diet increased serum levels of cholesterol and free fatty acids (FFAs) and led to systemic oxidative stress and pro-inflammatory status. Cardiac lipid dysregulation, which was characterized by elevated levels of cholesterol and adipocyte (A)- and heart (H)-fatty acid binding proteins (FABPs), occurred after HFHC diet for 4 weeks. Cardiac damage was further evident with elevated circulating H-FABP levels, increased cardiac interstitial fibrosis and the loss of troponin I. CONCLUSION: Our data demonstrated that HFHC diet led to systemic and cardiac lipid dysregulation, accompanied by systemic oxidative and pro-inflammatory stresses, and these may finally cooperate to cause a series of pathological changes of the heart tissue. Our findings suggest that maintenance of lipid regulation may be essential in the prevention of heart damage.


Assuntos
Cardiomiopatias/metabolismo , Fibrose/metabolismo , Hiperlipidemias/metabolismo , Peroxidação de Lipídeos , Miocárdio/metabolismo , Estresse Oxidativo , Animais , Cardiomiopatias/etiologia , Colesterol , Dieta Hiperlipídica/efeitos adversos , Proteínas de Ligação a Ácido Graxo/genética , Fibrose/etiologia , Regulação da Expressão Gênica , Coração , Hiperlipidemias/complicações , Inflamação , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Cell Mol Med ; 21(2): 265-277, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27641240

RESUMO

Mesenchymal stem cells (MSCs) have emerged as a potential cell-based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) were superior over bone marrow-derived MSCs (BM-MSCs) in attenuating cigarette smoke (CS)-induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC-MSCs on inflammation, apoptosis, and proliferation in a CS-exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC-MSCs or BM-MSCs were administered intravenously. We observed significant attenuation of CS-induced elevation of circulating 8-isoprostane and cytokine-induced neutrophil chemoattractant-1 after iPSC-MSC treatment. In line, a superior capacity of iPSC-MSCs was also observed in ameliorating CS-induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM-MSCs. In support, the conditioned medium (CdM) from iPSC-MSCs ameliorated CS medium-induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC-MSCs contained higher level of stem cell factor (SCF) than that from BM-MSCs. Deprivation of SCF from iPSC-MSC-derived CdM led to a reduction in anti-apoptotic and pro-proliferative capacity. Taken together, our data suggest that iPSC-MSCs may possess anti-apoptotic/pro-proliferative capacity in the in vivo and in vitro models of CS-induced airway cell injury partly through paracrine secretion of SCF.


Assuntos
Apoptose/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Pulmão/patologia , Células-Tronco Mesenquimais/citologia , Fumar/efeitos adversos , Fator de Células-Tronco/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Epitélio/efeitos dos fármacos , Epitélio/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos
10.
Mol Pharm ; 14(12): 4606-4617, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29121767

RESUMO

Pulmonary delivery of small interfering RNA (siRNA) has huge potential for the treatment of a wide range of respiratory diseases. The ability of naked siRNA to transfect cells in the lungs without a delivery vector has prompted the investigation of whether an endogenous component is at least partially responsible for the cellular uptake of siRNA, and whether a safe and efficient delivery system could be developed from this component to further improve the transfection efficiency. Surfactant protein B (SP-B), a positively charged protein molecule found in lung surfactant, is one of the possible candidates. While the role of SP-B in siRNA transfection remains to be determined, the SP-B mimic, synthetic KL4 peptide, was investigated in this study as a potential siRNA carrier. KL4 is a 21-residue cationic peptide that was able to bind to siRNA to form nanosized complexes. It mediated siRNA transfection effectively in vitro on human lung epithelial cells, A549 cells, and BEAS-2B cells, which was comparable to Lipofectamine 2000. When commercial pulmonary surfactant (Infasurf) was added in the transfection medium, the gene silencing effect of siRNA in cells transfected with Lipofectamine 2000 was completely abolished, whereas those transfected with KL4 remained unaffected. At 4 °C, KL4 failed to deliver siRNA into the cells, indicating that an energy-dependent process was involved in the uptake of the complexes. Chlorpromazine (inhibitor of chathrin-mediated endocytosis), but not nystatin (inhibitor of caveolae-mediated endocytosis), inhibited the uptake of KL4/siRNA complexes, suggesting that they entered cells through clathrin-mediated endocytosis. There was no sign of cytotoxicity or immune response caused by KL4 and KL4/siRNA complexes. Overall, this study demonstrated that synthetic KL4 peptide is a promising candidate for siRNA carrier for pulmonary delivery and could be a potential platform for delivering other types of nucleic acid therapeutics.


Assuntos
Portadores de Fármacos/química , Peptídeos/química , Proteína B Associada a Surfactante Pulmonar/química , RNA Interferente Pequeno/uso terapêutico , Transfecção/métodos , Células A549 , Produtos Biológicos/química , Cátions/química , Clorpromazina/farmacologia , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Inativação Gênica , Humanos , Lipídeos/química , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Nistatina/farmacologia
11.
Am J Physiol Cell Physiol ; 310(6): C446-55, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26739492

RESUMO

Aberrant release of adipocytokines from adipose tissues dysregulates cardiometabolic functions. The present study hypothesizes that chronic intermittent hypoxia (IH) present in obstructive sleep apnea leads to adipose tissue dysfunction, which in turn contributes to vascular pathogenesis. The effect of IH was evaluated in adipose depots and aortic tissues in lean rats in vivo. Furthermore, the cellular and molecular mechanisms underlying pathophysiological interactions between adipocytes and endothelial cells were investigated in vitro. The in vivo results showed that IH induced upregulation of IL-6 and monocyte chemoattractant protein-1 (MCP-1) in subcutaneous and periaortic adipose tissues and downregulated phosphorylation of endothelial nitric oxide synthase [eNOS (ser1177)] in the aorta with activation of Erk and p38 MAPK. In support, cultured adipocytes demonstrated IH-induced elevations of NADPH oxidase 4, phosphorylation of Erk, NF-κBp65, and inducible NOS (iNOS) and increased expression of IL-6 and MCP-1. Likewise, endothelial EA.hy926 (EA) cells exposed to IH showed eNOS (ser1177) and intracellular cGMP reduction, whereas MCP-1 and iNOS expression were upregulated. Treatment of EA cells with conditioned media derived from IH-exposed cultured adipocytes caused nuclear translocation of NF-κBp65 and elevation of MCP-1, which were prevented by addition of neutralizing IL-6 antibodies to the conditioned media. Recombinant IL-6 in addition to IH induced further MCP-1 release and iNOS protein expression in EA cells, which were prevented by pharmacological inhibition of Erk, p38, and NF-κB. These findings suggest that IH could induce adipose tissue inflammation, which may cross talk with endothelial cells via adipocyte-derived mediators such as IL-6, and promote NF-κB-dependent endothelial dysfunction.


Assuntos
Adipócitos/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Animais , Células Cultivadas , Quimiocina CCL2/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Respiration ; 91(2): 124-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26784019

RESUMO

BACKGROUND: Endothelial dysfunction has been recognized to occur in the context of obstructive sleep apnea (OSA) or tobacco smoking. However, the deleterious effect on vascular function with concurrence of both conditions is largely unknown. OBJECTIVE: To investigate whether the concurrence of OSA and smoking poses an additive detriment to endothelial dysfunction. METHODS: Chinese men without a history of chronic medical illness were invited to complete a questionnaire including smoking pack-year exposure, polysomnography and peripheral arterial tonometry (PAT) for endothelial function. Serum 8-isoprostane, advanced oxidation protein products (AOPP) and monocyte chemo-attractant protein-1 (MCP-1) were measured. RESULTS: 114 men were successfully enrolled. PAT ratio, adjusted for age and body mass index, correlated inversely with overall severity of OSA: apnea-hypopnea index (AHI), r = -0.160 (p = 0.092); oxygen desaturation index, r = -0.214 (p = 0.024); duration of oxygen saturation <90%, r = -0.219 (p = 0.020); and minimum oxygen saturation, r = 0.250 (p = 0.008). The PAT ratio decreased with increasing pack-year group (p = 0.018). It was lower with concurrent smoking history and moderate-severe OSA (AHI ≥15/h) compared to having one or neither factor (p = 0.011). Serum levels of 8-isoprostane and AOPP were positively related to severity of OSA, while MCP-1 correlated with smoking quantity. Multiple linear regression analyses showed that severity of intermittent hypoxia, MCP-1 and pack-year exposure were independent predictors of PAT ratio. CONCLUSION: While OSA, in particular intermittent hypoxemia, and tobacco smoking were independent risk factors, the concurrence of moderate-severe OSA and smoking was associated with the most severe impairment in endothelial function.


Assuntos
Endotélio Vascular/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologia , Fumar/fisiopatologia , Adulto , Produtos da Oxidação Avançada de Proteínas/sangue , Quimiocina CCL2/sangue , Estudos de Coortes , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Apneia Obstrutiva do Sono/sangue , Fumar/sangue
13.
Zhonghua Jie He He Hu Xi Za Zhi ; 38(7): 516-9, 2015 Jul.
Artigo em Zh | MEDLINE | ID: mdl-26703018

RESUMO

OBJECTIVE: To investigate the effect of chronic intermittent hypoxia (CIH) on inflammatory and pathological changes of the lung in an animal model as well as the protective effect of heme oxygenase-1 in this process. METHODS: Twenty-four Male Sprague-Dawley rats were randomly divided into 4 groups: intermittent normoxia (IN) group, CIH group, IN+hemin injection (hemin) group and CIH+hemin injection (CIH+hemin) group. The CIH profiling was repetitive 4 min 10% O2and 2 min 21% O2for 8 hours per day for 6 weeks. Animals exposed to IN were kept in an identical chamber receiving intermittent air at the same flow rate. Hemin was intraperitoneally injected (4 mg/kg) to induced HO-1 expression, and other 2 groups only received an injection of same amount of saline. Western blot was utilized to detect the pulmonary HO-1 expression levels and ELISA was used to examine the pulmonary cytokine levels. H&E staining was used to investigate pathological changes of the lung. RESULTS: CIH significantly induced HO-1 expression in the lung and hemin induced a synergistic increase of HO-1 expression. CIH exposure significantly increased pulmonary inflammatory cytokines levels, TNF-α [(2.20 ± 0.10) vs (1.80 ± 0.08) ng/ml], IL-6 [(0.87 ± 0.05) vs (0.52 ± 0.05) ng/ml], CINC-1 [(66 ± 6) vs (39 ± 5) pg/ml] and MCP-1 [(2.20 ± 0.09) vs (1.40 ± 0.10) ng/ml], accelerated cell apoptosis and induced pathological changes of the lung, while hemin could inhibit the elevation of cytokines [(TNF-α:(1.60 ± 0.20) ng/ml, IL-6: (0.60 ± 0.07) ng/ml, CINC-1: (45 ± 6) pg/ml, MCP-1: (1.80 ± 0.10) ng/ml, all P<0.05] and cell apoptosis, as well as reversing the structural injury of the lung under CIH condition. CONCLUSIONS: CIH leads to inflammatory stress, cell apoptosis and pathological changes within the lung, while HO-1 could inhibit inflammation and apoptosis, thereby reversing the pulmonary injury.


Assuntos
Lesão Pulmonar , Animais , Apoptose , Citocinas , Modelos Animais de Doenças , Heme Oxigenase-1 , Hemina , Hipóxia , Pulmão , Masculino , Ratos , Ratos Sprague-Dawley
14.
Am J Respir Cell Mol Biol ; 51(3): 455-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24738760

RESUMO

Transplantation of mesenchymal stem cells (MSCs) holds great promise in the repair of cigarette smoke (CS)-induced lung damage in chronic obstructive pulmonary disease (COPD). Because CS leads to mitochondrial dysfunction, we aimed to investigate the potential benefit of mitochondrial transfer from human-induced pluripotent stem cell-derived MSCs (iPSC-MSCs) to CS-exposed airway epithelial cells in vitro and in vivo. Rats were exposed to 4% CS for 1 hour daily for 56 days. At Days 29 and, human iPSC-MSCs or adult bone marrow-derived MSCs (BM-MSCs) were administered intravenously to CS-exposed rats. CS-exposed rats exhibited severe alveolar destruction with a higher mean linear intercept (Lm) than sham air-exposed rats (P < 0.001) that was attenuated in the presence of iPSC-MSCs or BM-MSCs (P < 0.01). The attenuation of Lm value and the severity of fibrosis was greater in the iPSC-MSC-treated group than in the BM-MSC-treated group (P < 0.05). This might have contributed to the novel observation of mitochondrial transfer from MSCs to rat airway epithelial cells in lung sections exposed to CS. In vitro studies further revealed that transfer of mitochondria from iPSC-MSCs to bronchial epithelial cells (BEAS-2B) was more effective than from BM-MSCs, with preservation of adenosine triphosphate contents. This distinct mitochondrial transfer occurred via the formation of tunneling nanotubes. Inhibition of tunneling nanotube formation blocked mitochondrial transfer. Our findings indicate a higher mitochondrial transfer capacity of iPSC-MSCs than BM-MSCs to rescue CS-induced mitochondrial damage. iPSC-MSCs may thus hold promise for the development of cell therapy in COPD.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Mucosa Respiratória/citologia , Fumaça/efeitos adversos , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Separação Celular , Técnicas de Cocultura , Células Epiteliais/citologia , Citometria de Fluxo , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/efeitos dos fármacos , Nicotiana
15.
ACS Nano ; 18(20): 13361-13376, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728619

RESUMO

Oxygen therapy cannot rescue local lung hypoxia in patients with severe respiratory failure. Here, an inhalable platform is reported for overcoming the aberrant hypoxia-induced immune changes and alveolar damage using camouflaged poly(lactic-co-glycolic) acid (PLGA) microparticles with macrophage apoptotic body membrane (cMAB). cMABs are preloaded with mitochondria-targeting superoxide dismutase/catalase nanocomplexes (NCs) and modified with pathology-responsive macrophage growth factor colony-stimulating factor (CSF) chains, which form a core-shell platform called C-cMAB/NC with efficient deposition in deeper alveoli and high affinity to alveolar epithelial cells (AECs) after CSF chains are cleaved by matrix metalloproteinase 9. Therefore, NCs can be effectively transported into mitochondria to inhibit inflammasome-mediated AECs damage in mouse models of hypoxic acute lung injury. Additionally, the at-site CSF release is sufficient to rescue circulating monocytes and macrophages and alter their phenotypes, maximizing synergetic effects of NCs on creating a pro-regenerative microenvironment that enables resolution of lung injury and inflammation. This inhalable platform may have applications to numerous inflammatory lung diseases.


Assuntos
Macrófagos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Camundongos , Macrófagos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos Endogâmicos C57BL , Hipóxia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar/patologia , Lesão Pulmonar/terapia , Administração por Inalação , Apoptose/efeitos dos fármacos
16.
Int J Epidemiol ; 53(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38332579

RESUMO

BACKGROUND: Recommendations around the use of 23-valent pneumococcal polysaccharide vaccine (PPSV23) and 13-valent pneumococcal conjugate vaccine (PCV13) seldom focus on potential benefits of vaccine on comorbidities. We aimed to investigate whether sequential vaccination with PCV13 and PPSV23 among older adults would provide protection against cardiovascular diseases (CVD) compared with using a single pneumococcal vaccine. METHODS: We conducted a Hong Kong-wide retrospective cohort study between 2012 and 2020. Adults aged ≥65 years were identified as receiving either a single or sequential dual vaccination and followed up until the earliest CVD occurrence, death or study end. To minimize confounding, we matched each person receiving a single vaccination to a person receiving sequential vaccination according to their propensity scores. We estimated the hazard ratio (HR) of CVD risk using Cox regression and applied structural equation modelling to test whether the effect of sequential dual vaccination on CVD was mediated via the reduction in pneumonia. RESULTS: After matching, 69 390 people remained in each group and the median (interquartile range) follow-up time was 1.89 (1.55) years. Compared with those receiving a single vaccine, those receiving sequential dual vaccination had a lower risk of CVD [HR (95% CI): 0.75 (0.71, 0.80), P < 0.001]. Post-hoc mediation analysis showed strong evidence that the decreased CVD risk was mediated by the reduction in all-cause pneumonia. CONCLUSIONS: Sequential dual pneumococcal vaccination was associated with lower risk of CVD compared with single-dose PCV13 or PPSV23 in older adults. Such additional CVD benefits should be considered when making decisions about pneumococcal vaccination.


Assuntos
Doenças Cardiovasculares , Infecções Pneumocócicas , Pneumonia , Humanos , Idoso , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Estudos de Coortes , Estudos Retrospectivos , Vacinas Conjugadas , Vacinação , Vacinas Pneumocócicas , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle
18.
Sleep Breath ; 17(3): 937-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23179139

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is independently associated with endothelial dysfunction, which may be perpetuated by alteration in endothelial repair capacity. Our study evaluates changes in endothelial progenitor cell (EPC) profile in relation to OSA and the role of advanced glycation end-products (AGE) in this relationship. METHODS: Consecutive Chinese adults undergoing sleep studies, who had no medical illnesses or regular medications, were enrolled. Subjects with morbid obesity or grossly elevated lipoprotein levels were excluded from analysis. Circulating EPC was measured with flow cytometry analysis. RESULTS: Seventy-two subjects, 64 % with OSA defined by apnea-hypopnea index (AHI) ≥ 5, were analyzed. CD34+ cell counts were positively correlated with oxygen desaturation index (ODI) (r = 0.250, p = 0.041) and duration of oxygen desaturation <90 % (T90) (r = 0.261, p = 0.033) and negatively with minimal oxygen saturation (r = -0.247, p = 0.044) after adjusting for age, glucose, body weight, and smoking status. AGE was positively correlated with indices of OSA severity (AHI, r = 0.249, p = 0.042; ODI, r = 0.244, p = 0.047; T90, r = 0.243, p = 0.047; minimal oxygen saturation, r = -0.251, p = 0.041) and negatively with CD133+ cells (r = -0.281, p = 0.021). On stepwise multiple linear regression analysis, minimal oxygen saturation (p = 0.013) and CD133+ cell counts (p = 0.029) were found to be significant determinants of AGE level (R(2) = 0.147). CONCLUSIONS: Nocturnal hypoxemia in OSA subjects was associated with increase in endothelial cells (CD34+) which may promote vascular repair. Accumulation of AGE in OSA may lead to diminution in early EPC (CD133+) and endothelial repair capacity over time, thus contributing to vascular pathogenesis.


Assuntos
Células Endoteliais/fisiologia , Oxigênio/sangue , Apneia Obstrutiva do Sono/fisiopatologia , Células-Tronco/fisiologia , Antígeno AC133 , Adulto , Antígenos CD/sangue , Antígenos CD34/sangue , Contagem de Células , Ritmo Circadiano/fisiologia , Feminino , Produtos Finais de Glicação Avançada/sangue , Glicoproteínas/sangue , Humanos , Hipóxia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Peptídeos/sangue , Polissonografia , Valores de Referência
19.
Adv Pharmacol ; 98: 225-247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524488

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of death and reduces quality of life that contributes to a health problem worldwide. Chronic airway inflammation is a hallmark of COPD, which occurs in response to exposure of inhaled irritants like cigarette smoke. Despite accessible to the most up-to-date medications, none of the treatments is currently available to decrease the disease progression. Therefore, it is believed that drugs which can reduce airway inflammation will provide effective disease modifying therapy for COPD. There are many broad-range anti-inflammatory drugs including those that inhibit cell signaling pathways like inhibitors of p38 mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and phosphoinositide-3-kinase (PI3K), are now in phase III development for COPD. In this chapter, we review recent basic research data in the laboratory that may indicate novel therapeutic pathways arisen from currently used drugs such as selective monoamine oxidase (MAO)-B inhibitors and drugs targeting peripheral benzodiazepine receptors [also known as translocator protein (TSPO)] to reduce airway inflammation. Considering the impact of chronic airway inflammation on the lives of COPD patients, the potential pharmacological candidates for new anti-inflammatory targets should be further investigated. In addition, it is crucial to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target novel therapies. This review will enhance our knowledge on how cigarette smoke affects MAO-B activity and TSPO activation/inactivation with specific ligands through regulation of mitochondrial function, and will help to identify new potential treatment for COPD in future.


Assuntos
Reposicionamento de Medicamentos , Doença Pulmonar Obstrutiva Crônica , Humanos , Qualidade de Vida , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Receptores de GABA
20.
ACS Nano ; 17(12): 11626-11644, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37285229

RESUMO

Interactions of lung macrophages and recruited neutrophils with the lung microenvironment continuously aggravate the dysregulation of lung inflammation in the pathogenesis of acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Either modulating macrophages or destroying neutrophil counts cannot guarantee a satisfactory outcome in ARDS treatment. Aimed at inhibiting the coordinated action of neutrophils and macrophages and modulating the hyper-inflammatory condition, an inhalable biomimetic sequential drug-releasing nanoplatform was developed for the combinatorial treatment of ALI. The nanoplatform (termed D-SEL) was made by conjugating DNase I, as outer cleavable arms, to a serum exosomal and liposomal hybrid nanocarrier (termed SEL) via a matrix metalloproteinase 9 (MMP-9)-cleavable peptide and then encapsulating methylprednisolone sodium succinate (MPS). In lipopolysaccharide (LPS) induced ALI in mice, the MPS/D-SEL moved through muco-obstructive airways and was retained in the alveoli for over 24 h postinhalation. DNase I was then released from the nanocarrier first after responding to MMP-9, resulting in inner SEL core exposure, which precisely delivered MPS into macrophages for promoting M2 macrophage polarization. Local and sustained DNase I release degraded dysregulated neutrophil extracellular traps (NETs) and suppressed neutrophil activation and the mucus plugging microenvironment, which in turn amplified M2 macrophage polarization efficiency. Such dual-stage drug release behavior facilitated down-regulation of pro-inflammatory cytokines in the lung but anti-inflammatory cytokine production through remodeling lung immune homeostasis, ultimately promoting lung tissue repair. This work presents a versatile hybrid biomimetic nanoplatform for the local pulmonary delivery of dual-drug therapeutics and displays potential in the treatment of acute inflammation.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Biomimética , Liberação Controlada de Fármacos , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Homeostase , Desoxirribonuclease I , Lipopolissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA