Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19117-19132, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859054

RESUMO

Optical femtosecond pump-probe experiments allow to measure the dynamics of ultrafast heating of metals with high accuracy. However, the theoretical analysis of such experiments is often complicated because of the indirect connection of the measured signal and the desired temperature transients. Establishing such a connection requires an accurate model of the optical constants of a metal, depending on both the electron temperature Te and the lattice temperature Tl. In this paper, we present first-principles simulations of the two-temperature scenario with Te ≫ Tl, showing the optical response of hot electrons to laser irradiation in gold and ruthenium. Comparing our simulations with the Kubo-Greenwood approach, we discuss the influence of electron-phonon and electron-electron scattering on the intraband contribution to optical constants. Applying the simulated optical constants to the analysis of ultrafast heating of ruthenium thin films we highlight the importance of the latter scattering channel to understand the measured heating dynamics.

2.
Opt Express ; 29(9): 14025-14032, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985128

RESUMO

We report on the manufacturing and testing of the first nanofocusing refractive lenses made of single-crystal silicon carbide. We introduce the fabrication process based on lithography, followed by deep isotropic etching. The lenses were characterized at the energy of 12 keV at the beamline P06 of the synchrotron radiation source PETRA III. A focal spot of 186 nm×275 nm has been achieved with a lens working distance of 29 mm.

3.
Opt Express ; 28(18): 25664-25681, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906853

RESUMO

Proper diagnostics of intense free-electron laser (FEL) X-ray pulses is indisputably important for experimental data analysis as well as for the protection of beamline optical elements. New challenges for beam diagnostic methods are introduced by modern FEL facilities capable of delivering powerful pulses at megahertz (MHz) repetition rates. In this paper, we report the first characterization of a defocused MHz 13.5-nm beam generated by the free-electron laser in Hamburg (FLASH) using the method of multi-pulse desorption imprints in poly(methyl methacrylate)(PMMA). The beam fluence profile is reconstructed in a novel and highly accurate way that takes into account the nonlinear response of material removal to total dose delivered by multiple pulses. The algorithm is applied to experimental data of single-shot ablation imprints and multi-shot desorption imprints at both low (10 Hz) and high (1 MHz) repetition rates. Reconstructed response functions show a great agreement with the theoretical desorption response function model.

4.
J Synchrotron Radiat ; 25(Pt 1): 77-84, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271755

RESUMO

The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.

5.
Opt Express ; 26(15): 19665-19685, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30114137

RESUMO

Ruthenium is a perspective material to be used for XUV mirrors at free-electron laser facilities. Yet, it is still poorly studied in the context of ultrafast laser-matter interaction. In this work, we present single-shot damage studies of thin Ru films irradiated by femtosecond XUV free-electron laser pulses at FLASH. Ex-situ analysis of the damaged spots, performed by different types of microscopy, shows that the weakest detected damage is surface roughening. For higher fluences we observe ablation of Ru. Combined simulations using Monte-Carlo code XCASCADE(3D) and the two-temperature model reveal that the damage mechanism is photomechanical spallation, similar to the case of irradiating the target with optical lasers. The analogy with the optical damage studies enables us to explain the observed damage morphologies.

6.
Opt Express ; 24(14): 15468-77, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410821

RESUMO

The role played by heat accumulation in multi-shot damage of silicon was studied. Bulk silicon samples were exposed to intense XUV monochromatic radiation of a 13.5 nm wavelength in a series of 400 femtosecond pulses, repeated with a 1 MHz rate (pulse trains) at the FLASH facility in Hamburg. The observed surface morphological and structural modifications are formed as a result of sample surface melting. Modifications are threshold dependent on the mean fluence of the incident pulse train, with all threshold values in the range of approximately 36-40 mJ/cm2. Experimental data is supported by a theoretical model described by the heat diffusion equation. The threshold for reaching the melting temperature (45 mJ/cm2) and liquid state (54 mJ/cm2), estimated from this model, is in accordance with experimental values within measurement error. The model indicates a significant role of heat accumulation in surface modification processes.

7.
J Appl Crystallogr ; 57(Pt 2): 481-491, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596732

RESUMO

The strong metal-support interaction (SMSI) is a phenomenon observed in supported metal catalyst systems in which reducible metal oxide supports can form overlayers over the surface of active metal nanoparticles (NPs) under a hydrogen (H2) environment at elevated temperatures. SMSI has been shown to affect catalyst performance in many reactions by changing the type and number of active sites on the catalyst surface. Laboratory methods for the analysis of SMSI at the nanoparticle-ensemble level are lacking and mostly based on indirect evidence, such as gas chemisorption. Here, we demonstrate the possibility to detect and characterize SMSIs in Co/TiOx model catalysts using the laboratory X-ray standing wave (XSW) technique for a large ensemble of NPs at the bulk scale. We designed a thermally stable MoNx/SiNx periodic multilayer to retain XSW generation after reduction with H2 gas at 600°C. The model catalyst system was synthesized here by deposition of a thin TiOx layer on top of the periodic multilayer, followed by Co NP deposition via spare ablation. A partial encapsulation of Co NPs by TiOx was identified by analyzing the change in Ti atomic distribution. This novel methodological approach can be extended to observe surface restructuring of model catalysts in situ at high temperature (up to 1000°C) and pressure (≤3 mbar), and can also be relevant for fundamental studies in the thermal stability of membranes, as well as metallurgy.

8.
Opt Express ; 21(24): 29894-904, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514540

RESUMO

In the first part of this article we experimentally show that contrast between the very thin layers of La and B enables close to theoretical reflectance. The reflectivity at 6.8 nm wavelength was measured from La/B multilayer mirrors with period thicknesses ranging from 3.5 to 7.2 nm at the appropriate angle for constructive interference. The difference between the measured reflectance and the reflectance calculated for a perfect multilayer structure decreases with increasing multilayer period. The reflectance of the multilayer with the largest period approaches the theoretical value, showing that the optical contrast between the very thin layers of these structures allows to experimentally access close to theoretical reflectance. In the second part of the article we discuss the structure of La/B and LaN/B multilayers. This set of multilayers is probed by hard X-rays (λ = 0.154 nm) and EUV radiation (λ = 6.8 nm). The structure is reconstructed based on a simultaneous fit of the grazing incidence hard X-ray reflectivity and the EUV reflectivity curves. The reflectivity analysis of the La/B and LaN/B multilayer mirrors shows that the lower reflectance of La/B mirrors compared to LaN/B mirrors can be explained by the presence of 5% of La atoms in the B layer and 63% of B in La layer. After multi-parametrical optimization of the LaN/B system, including the nitridation of La, the highest near normal incidence reflectivity of 57.3% at 6.6 nm wavelength has been measured from a multilayer mirror, containing 175 bi-layers. This is the highest value reported so far.

9.
Opt Express ; 20(11): 11778-86, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714165

RESUMO

The spectral properties of La/B, La/B(4)C, and LaN/B, LaN/B(4)C multilayer mirrors have been investigated in the 6.5-6.9 nm wavelength range based on measured B and B(4)C optical constants. Experimentally it is verified to what extent measured and tabulated optical constants are applicable for simulations of the reflectivity of these short period multilayer mirrors. The measured maximum reflectance at various wavelength values around the boron-K absorption edge is compared to calculated values from model systems. The measured reflectance profiles of La/B and La/B(4)C show a maximum at a slightly larger wavelength than calculations would predict based on the measured B and B(4)C optical constants. This is explained by the influence of a formed boron-lanthanum compound on the wavelength where the multilayer shows maximum reflectance. The maximum reflectance profiles of LaN/B and LaN/B(4)C multilayers can be described accurately by using the same boron atomic scattering factors, indicating boron in the LaN/B(4)C multilayer to be in a similar chemical state as boron in the LaN/B multilayer. It also indicates that nitridation of the La layer in the multilayer prevents the formation of La-B compounds. We show that the optimal wavelength for boron based optics is about 6.65 nm and depends on the B chemical state. Finally, using the measured B optical constants we are able to calculate the spectral response of the multilayers, enabling the prediction of the optimal parameters for the above mentioned multilayers.


Assuntos
Boro/química , Desenho Assistido por Computador , Lentes , Modelos Teóricos , Refratometria/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
10.
Materials (Basel) ; 15(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897625

RESUMO

Ultrafast laser irradiation of metals can often be described theoretically with the two-temperature model. The energy exchange between the excited electronic system and the atomic one is governed by the electron-phonon coupling parameter. The electron-phonon coupling depends on both, the electronic and the atomic temperature. We analyze the effect of the dependence of the electron-phonon coupling parameter on the atomic temperature in ruthenium, gold, and palladium. It is shown that the dependence on the atomic temperature induces nonlinear behavior, in which a higher initial electronic temperature leads to faster electron-phonon equilibration. Analysis of the experimental measurements of the transient thermoreflectance of the laser-irradiated ruthenium thin film allows us to draw some, albeit indirect, conclusions about the limits of the applicability of the different coupling parametrizations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA