Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hum Brain Mapp ; 45(4): e26660, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488444

RESUMO

The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multimodal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared with term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.


Assuntos
Recém-Nascido Prematuro , Nascimento Prematuro , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/diagnóstico por imagem , Encéfalo , Imageamento por Ressonância Magnética , Cognição
2.
PLoS Biol ; 18(11): e3000976, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33226978

RESUMO

Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Feto/anatomia & histologia , Feto/metabolismo , Encéfalo/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Feminino , Maturidade dos Órgãos Fetais/genética , Feto/diagnóstico por imagem , Neuroimagem Funcional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Imageamento por Ressonância Magnética Multiparamétrica , Neurogênese/genética , Gravidez , Nascimento Prematuro , Análise Espaço-Temporal
3.
Cereb Cortex ; 31(8): 3665-3677, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33822913

RESUMO

The diverse cerebral consequences of preterm birth create significant challenges for understanding pathogenesis or predicting later outcome. Instead of focusing on describing effects common to the group, comparing individual infants against robust normative data offers a powerful alternative to study brain maturation. Here we used Gaussian process regression to create normative curves characterizing brain volumetric development in 274 term-born infants, modeling for age at scan and sex. We then compared 89 preterm infants scanned at term-equivalent age with these normative charts, relating individual deviations from typical volumetric development to perinatal risk factors and later neurocognitive scores. To test generalizability, we used a second independent dataset comprising of 253 preterm infants scanned using different acquisition parameters and scanner. We describe rapid, nonuniform brain growth during the neonatal period. In both preterm cohorts, cerebral atypicalities were widespread, often multiple, and varied highly between individuals. Deviations from normative development were associated with respiratory support, nutrition, birth weight, and later neurocognition, demonstrating their clinical relevance. Group-level understanding of the preterm brain disguises a large degree of individual differences. We provide a method and normative dataset that offer a more precise characterization of the cerebral consequences of preterm birth by profiling the individual neonatal brain.


Assuntos
Encéfalo/anatomia & histologia , Recém-Nascido Prematuro/fisiologia , Peso ao Nascer , Desenvolvimento Infantil , Cognição , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro/psicologia , Imageamento por Ressonância Magnética , Masculino , Distribuição Normal , Fenótipo , Gravidez , Nascimento Prematuro , Valores de Referência , Caracteres Sexuais
4.
Neuroimage ; 243: 118488, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419595

RESUMO

INTRODUCTION: The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS: We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS: In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION: We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Nascimento Prematuro/diagnóstico por imagem , Anisotropia , Encéfalo/crescimento & desenvolvimento , Espessura Cortical do Cérebro , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Terceiro Trimestre da Gravidez
5.
Brain ; 143(2): 467-479, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942938

RESUMO

Premature birth occurs during a period of rapid brain growth. In this context, interpreting clinical neuroimaging can be complicated by the typical changes in brain contrast, size and gyrification occurring in the background to any pathology. To model and describe this evolving background in brain shape and contrast, we used a Bayesian regression technique, Gaussian process regression, adapted to multiple correlated outputs. Using MRI, we simultaneously estimated brain tissue intensity on T1- and T2-weighted scans as well as local tissue shape in a large cohort of 408 neonates scanned cross-sectionally across the perinatal period. The resulting model provided a continuous estimate of brain shape and intensity, appropriate to age at scan, degree of prematurity and sex. Next, we investigated the clinical utility of this model to detect focal white matter injury. In individual neonates, we calculated deviations of a neonate's observed MRI from that predicted by the model to detect punctate white matter lesions with very good accuracy (area under the curve > 0.95). To investigate longitudinal consistency of the model, we calculated model deviations in 46 neonates who were scanned on a second occasion. These infants' voxelwise deviations from the model could be used to identify them from the other 408 images in 83% (T2-weighted) and 76% (T1-weighted) of cases, indicating an anatomical fingerprint. Our approach provides accurate estimates of non-linear changes in brain tissue intensity and shape with clear potential for radiological use.


Assuntos
Lesões Encefálicas/patologia , Encéfalo/crescimento & desenvolvimento , Nascimento Prematuro/patologia , Substância Branca/patologia , Encéfalo/patologia , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Estudos Longitudinais , Neuroimagem/métodos , Gravidez , Substância Branca/crescimento & desenvolvimento
6.
Cereb Cortex ; 30(11): 5767-5779, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32537627

RESUMO

Interruptions to neurodevelopment during the perinatal period may have long-lasting consequences. However, to be able to investigate deviations in the foundation of proper connectivity and functional circuits, we need a measure of how this architecture evolves in the typically developing brain. To this end, in a cohort of 241 term-born infants, we used magnetic resonance imaging to estimate cortical profiles based on morphometry and microstructure over the perinatal period (37-44 weeks postmenstrual age, PMA). Using the covariance of these profiles as a measure of inter-areal network similarity (morphometric similarity networks; MSN), we clustered these networks into distinct modules. The resulting modules were consistent and symmetric, and corresponded to known functional distinctions, including sensory-motor, limbic, and association regions, and were spatially mapped onto known cytoarchitectonic tissue classes. Posterior regions became more morphometrically similar with increasing age, while peri-cingulate and medial temporal regions became more dissimilar. Network strength was associated with age: Within-network similarity increased over age suggesting emerging network distinction. These changes in cortical network architecture over an 8-week period are consistent with, and likely underpin, the highly dynamic processes occurring during this critical period. The resulting cortical profiles might provide normative reference to investigate atypical early brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Neurogênese/fisiologia , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino
7.
Neuroimage ; 223: 117303, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866666

RESUMO

The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early life spanning 20-45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has been designed to specifically address the challenges that neonatal data presents including low and variable contrast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated into the pipeline provide substantial reduction in movement related distortions, resulting in significant improvements in SNR, and detection of high quality RSNs from neonates.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Artefatos , Humanos , Lactente , Razão Sinal-Ruído
8.
J Pediatr ; 223: 57-63.e5, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32389719

RESUMO

OBJECTIVE: To assess the effect of early life nutrition on structural brain development in 2 cohorts of extremely preterm infants, before and after the implementation of a nutrition regimen containing more protein and lipid. STUDY DESIGN: We included 178 infants retrospectively (median gestational age, 26.6 weeks; IQR, 25.9-27.3), of whom 99 received the old nutrition regimen (cohort A, 2011-2013) and 79 the new nutrition regimen (cohort B, 2013-2015). Intake of protein, lipids, and calories was calculated for the first 28 postnatal days. Brain magnetic resonance imaging (MRI) was performed at 30 weeks postmenstrual age (IQR, 30.3-31.4) and term-equivalent age (IQR, 40.9-41.4). Volumes of 42 (left + right) brain structures were calculated. RESULTS: Mean protein and caloric intake in cohort B (3.4 g/kg per day [P < .001] and 109 kcal/kg per day [P = .038]) was higher than in cohort A (2.7 g/kg per day; 104 kcal/kg per day). At 30 weeks, 22 regions were significantly larger in cohort B compared with cohort A, whereas at term-equivalent age, only the caudate nucleus was significantly larger in cohort B compared with cohort A. CONCLUSIONS: An optimized nutrition protocol in the first 28 days of life is associated with temporarily improved early life brain volumes.


Assuntos
Encéfalo/crescimento & desenvolvimento , Ingestão de Energia , Fenômenos Fisiológicos da Nutrição do Lactente , Lactente Extremamente Prematuro/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Estudos Controlados Antes e Depois , Feminino , Humanos , Recém-Nascido , Lipídeos/administração & dosagem , Imageamento por Ressonância Magnética , Masculino , Proteínas/administração & dosagem , Estudos Retrospectivos
9.
Neuroimage ; 185: 764-775, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29802969

RESUMO

Human cortical development during the third trimester is characterised by macro- and microstructural changes which are reflected in alterations in diffusion MRI (dMRI) measures, with significant decreases in cortical mean diffusivity (MD) and fractional anisotropy (FA). This has been interpreted as reflecting increased cellular density and dendritic arborisation. However, the fall in FA stops abruptly at 38 weeks post-menstrual age (PMA), and then tends to plateau, while MD continues to fall, suggesting a more complex picture and raising the hypothesis that after this age development is dominated by continuing increase in neural and organelle density rather than alterations in the geometry of dendritic trees. To test this, we used neurite orientation dispersion and density imaging (NODDI), acquiring multi-shell, high angular resolution dMRI and measures of cortical volume and mean curvature in 99 preterm infants scanned between 25 and 47 weeks PMA. We predicted that increased neurite and organelle density would be reflected in increases in neurite density index (NDI), while a relatively unchanging geometrical structure would be associated with constant orientation dispersion index (ODI). As dendritic arborisation is likely to be one of the drivers of gyrification, we also predicted that measures of cortical volume and curvature would correlate with ODI and show slower growth after 38 weeks. We observed a decrease of MD throughout the period, while cortical FA decreased from 25 to 38 weeks PMA and then increased. ODI increased up to 38 weeks and then plateaued, while NDI rose after 38 weeks. The evolution of ODI correlated with cortical volume and curvature. Regional analysis of cortical microstructure revealed a heterogenous pattern with increases in FA and NDI after 38 weeks confined to primary motor and sensory regions. These results support the interpretation that cortical development between 25 and 38 weeks PMA shows a predominant increase in dendritic arborisation and neurite growth, while between 38 and 47 weeks PMA it is dominated by increasing cellular and organelle density.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Feto , Idade Gestacional , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Gravidez
10.
Neuroimage ; 185: 750-763, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29852283

RESUMO

The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido , Encéfalo/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino
11.
Neuroimage ; 170: 231-248, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28666878

RESUMO

In recent years, a variety of segmentation methods have been proposed for automatic delineation of the fetal and neonatal brain MRI. These methods aim to define regions of interest of different granularity: brain, tissue types or more localised structures. Different methodologies have been applied for this segmentation task and can be classified into unsupervised, parametric, classification, atlas fusion and deformable models. Brain atlases are commonly utilised as training data in the segmentation process. Challenges relating to the image acquisition, the rapid brain development as well as the limited availability of imaging data however hinder this segmentation task. In this paper, we review methods adopted for the perinatal brain and categorise them according to the target population, structures segmented and methodology. We outline different methods proposed in the literature and discuss their major contributions. Different approaches for the evaluation of the segmentation accuracy and benchmarks used for the segmentation quality are presented. We conclude this review with a discussion on shortcomings in the perinatal domain and possible future directions.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Diagnóstico Pré-Natal/métodos , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Feminino , Humanos , Recém-Nascido , Gravidez
12.
Neuroimage ; 170: 5-30, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412442

RESUMO

The macro-connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. It embodies the notion of representing and understanding all connections within the brain as a network, while the subdivision of the brain into interacting functional units is inherent in its architecture. As a result, the definition of network nodes is one of the most critical steps in connectivity network analysis. Although brain atlases obtained from cytoarchitecture or anatomy have long been used for this task, connectivity-driven methods have arisen only recently, aiming to delineate more homogeneous and functionally coherent regions. This study provides a systematic comparison between anatomical, connectivity-driven and random parcellation methods proposed in the thriving field of brain parcellation. Using resting-state functional MRI data from the Human Connectome Project and a plethora of quantitative evaluation techniques investigated in the literature, we evaluate 10 subject-level and 24 groupwise parcellation methods at different resolutions. We assess the accuracy of parcellations from four different aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity to the underlying connectivity data, (3) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (4) network analysis. This extensive evaluation of different parcellations generated at the subject and group level highlights the strengths and shortcomings of the various methods and aims to provide a guideline for the choice of parcellation technique and resolution according to the task at hand. The results obtained in this study suggest that there is no optimal method able to address all the challenges faced in this endeavour simultaneously.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Humanos , Interpretação de Imagem Assistida por Computador
13.
Neuroimage ; 167: 453-465, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29100940

RESUMO

In brain imaging, accurate alignment of cortical surfaces is fundamental to the statistical sensitivity and spatial localisation of group studies, and cortical surface-based alignment has generally been accepted to be superior to volume-based approaches at aligning cortical areas. However, human subjects have considerable variation in cortical folding, and in the location of functional areas relative to these folds. This makes alignment of cortical areas a challenging problem. The Multimodal Surface Matching (MSM) tool is a flexible, spherical registration approach that enables accurate registration of surfaces based on a variety of different features. Using MSM, we have previously shown that driving cross-subject surface alignment, using areal features, such as resting state-networks and myelin maps, improves group task fMRI statistics and map sharpness. However, the initial implementation of MSM's regularisation function did not penalize all forms of surface distortion evenly. In some cases, this allowed peak distortions to exceed neurobiologically plausible limits, unless regularisation strength was increased to a level which prevented the algorithm from fully maximizing surface alignment. Here we propose and implement a new regularisation penalty, derived from physically relevant equations of strain (deformation) energy, and demonstrate that its use leads to improved and more robust alignment of multimodal imaging data. In addition, since spherical warps incorporate projection distortions that are unavoidable when mapping from a convoluted cortical surface to the sphere, we also propose constraints that enforce smooth deformation of cortical anatomies. We test the impact of this approach for longitudinal modelling of cortical development for neonates (born between 31 and 43 weeks of post-menstrual age) and demonstrate that the proposed method increases the biological interpretability of the distortion fields and improves the statistical significance of population-based analysis relative to other spherical methods.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Córtex Cerebral/crescimento & desenvolvimento , Humanos , Recém-Nascido , Estudos Longitudinais , Modelos Teóricos
14.
Neuroimage ; 179: 11-29, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890325

RESUMO

We propose a method for constructing a spatio-temporal cortical surface atlas of neonatal brains aged between 36 and 44 weeks of post-menstrual age (PMA) at the time of scan. The data were acquired as part of the Developing Human Connectome Project (dHCP), and the constructed surface atlases are publicly available. The method is based on a spherical registration approach: Multimodal Surface Matching (MSM), using cortical folding for driving the alignment. Templates have been generated for the anatomical cortical surface and for the cortical feature maps: sulcal depth, curvature, thickness, T1w/T2w myelin maps and cortical regions. To achieve this, cortical surfaces from 270 infants were first projected onto the sphere. Templates were then generated in two stages: first, a reference space was initialised via affine alignment to a group average adult template. Following this, templates were iteratively refined through repeated alignment of individuals to the template space until the variability of the average feature sets converged. Finally, bias towards the adult reference was removed by applying the inverse of the average affine transformations on the template and de-drifting the template. We used temporal adaptive kernel regression to produce age-dependant atlases for 9 weeks (36-44 weeks PMA). The generated templates capture expected patterns of cortical development including an increase in gyrification as well as an increase in thickness and T1w/T2w myelination with increasing age.


Assuntos
Atlas como Assunto , Córtex Cerebral/anatomia & histologia , Conectoma/métodos , Recém-Nascido , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética
15.
Neuroimage ; 173: 88-112, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409960

RESUMO

The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.


Assuntos
Encéfalo/anatomia & histologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino
16.
Proc Natl Acad Sci U S A ; 112(20): 6485-90, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941391

RESUMO

Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.


Assuntos
Córtex Cerebral/fisiologia , Desenvolvimento Infantil/fisiologia , Tálamo/fisiologia , Fatores Etários , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Oxigênio/sangue
17.
Neuroimage ; 125: 456-478, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26499811

RESUMO

Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area.


Assuntos
Anatomia Artística , Atlas como Assunto , Encéfalo/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Neuronavegação/métodos , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Gravidez , Nascimento Prematuro
18.
J Pediatr ; 178: 93-100.e6, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27634629

RESUMO

OBJECTIVES: To investigate third-trimester extrauterine brain growth and correlate this with clinical risk factors in the neonatal period, using serially acquired brain tissue volumes in a large, unselected cohort of extremely preterm born infants. STUDY DESIGN: Preterm infants (gestational age <28 weeks) underwent brain magnetic resonance imaging (MRI) at around 30 weeks postmenstrual age and again around term equivalent age. MRIs were segmented in 50 different regions covering the entire brain. Multivariable regression analysis was used to determine the influence of clinical variables on volumes at both scans, as well as on volumetric growth. RESULTS: MRIs at term equivalent age were available for 210 infants and serial data were available for 131 infants. Growth over these 10 weeks was greatest for the cerebellum, with an increase of 258%. Sex, birth weight z-score, and prolonged mechanical ventilation showed global effects on brain volumes on both scans. The effect of brain injury on ventricular size was already visible at 30 weeks, whereas growth data and volumes at term-equivalent age revealed the effect of brain injury on the cerebellum. CONCLUSION: This study provides data about third-trimester extrauterine volumetric brain growth in preterm infants. Both global and local effects of several common clinical risk factors were found to influence serial volumetric measurements, highlighting the vulnerability of the human brain, especially in the presence of brain injury, during this period.


Assuntos
Encéfalo/crescimento & desenvolvimento , Desenvolvimento Infantil , Lactente Extremamente Prematuro/crescimento & desenvolvimento , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Tamanho do Órgão , Estudos Prospectivos , Fatores de Risco
19.
J Pediatr ; 167(2): 260-8.e3, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26054943

RESUMO

OBJECTIVES: To measure both fractional anisotropy (FA) values in the corticospinal tracts (CSTs) and volume of the thalami in preterm infants with cystic periventricular leukomalacia (c-PVL) and to compare these measurements with control infants. STUDY DESIGN: Preterm infants with c-PVL and controls with magnetic resonance imaging data acquired between birth and term equivalent age (TEA) were retrospectively identified in 2 centers. Tractography of the CST and segmentation of the thalamus were performed, and values from infants with c-PVL and controls were compared. RESULTS: Thirty-three subjects with c-PVL and 31 preterm controls were identified. All had at least 1 scan up to TEA, and multiple scans were performed in 31 infants. A significant difference in FA values of the CST was found between cases and controls on the scans both before and at TEA. Absolute thalamic volumes were significantly reduced at TEA but not on the earlier scans. Data acquired in infancy showed lower FA values in infants with c-PVL. CONCLUSIONS: Damage to the CST can be identified on the early scan and persists, whereas the changes in thalamic volume develop in the weeks between the early and term equivalent magnetic resonance imaging. This may reflect the difference between acute and remote effects of the extensive injury to the white matter caused by c-PVL.


Assuntos
Leucomalácia Periventricular/patologia , Tratos Piramidais/patologia , Tálamo/patologia , Anisotropia , Imagem de Tensor de Difusão/métodos , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Retrospectivos
20.
Neuroimage ; 101: 555-68, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008959

RESUMO

There is growing interest in exploring fetal functional brain development, particularly with Resting State fMRI. However, during a typical fMRI acquisition, the womb moves due to maternal respiration and the fetus may perform large-scale and unpredictable movements. Conventional fMRI processing pipelines, which assume that brain movements are infrequent or at least small, are not suitable. Previous published studies have tackled this problem by adopting conventional methods and discarding as much as 40% or more of the acquired data. In this work, we developed and tested a processing framework for fetal Resting State fMRI, capable of correcting gross motion. The method comprises bias field and spin history corrections in the scanner frame of reference, combined with slice to volume registration and scattered data interpolation to place all data into a consistent anatomical space. The aim is to recover an ordered set of samples suitable for further analysis using standard tools such as Group Independent Component Analysis (Group ICA). We have tested the approach using simulations and in vivo data acquired at 1.5 T. After full motion correction, Group ICA performed on a population of 8 fetuses extracted 20 networks, 6 of which were identified as matching those previously observed in preterm babies.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/embriologia , Feto/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Mapeamento Encefálico/normas , Feminino , Idade Gestacional , Humanos , Imageamento por Ressonância Magnética/normas , Movimento (Física) , Gravidez , Terceiro Trimestre da Gravidez , Diagnóstico Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA