RESUMO
In most cells, transcriptionally inactive heterochromatin is preferentially localized in the nuclear periphery and transcriptionally active euchromatin is localized in the nuclear interior. Different cell types display characteristic chromatin distribution patterns, which change dramatically during cell differentiation, proliferation, senescence and different pathological conditions. Chromatin organization has been extensively studied on a cell population level, but there is a need to understand dynamic reorganization of chromatin at the single cell level, especially in live cells. We have developed a novel image analysis tool that we term Fluorescence Ratiometric Imaging of Chromatin (FRIC) to quantitatively monitor dynamic spatiotemporal distribution of euchromatin and total chromatin in live cells. A vector (pTandemH) assures stoichiometrically constant expression of the histone variants Histone 3.3 and Histone 2B, fused to EGFP and mCherry, respectively. Quantitative ratiometric (H3.3/H2B) imaging displayed a concentrated distribution of heterochromatin in the periphery of U2OS cell nuclei. As proof of concept, peripheral heterochromatin responded to experimental manipulation of histone acetylation. We also found that peripheral heterochromatin depended on the levels of the inner nuclear membrane protein Samp1, suggesting an important role in promoting peripheral heterochromatin. Taken together, FRIC is a powerful and robust new tool to study dynamic chromatin redistribution in live cells.
Assuntos
Cromatina/genética , Proteínas de Membrana/genética , Imagem Molecular/métodos , Proteínas Nucleares/genética , Acetilação , Linhagem Celular , Núcleo Celular/genética , Eucromatina/genética , Heterocromatina/genética , Histonas/genética , Humanos , Membrana Nuclear/genética , Processamento de Proteína Pós-Traducional/genéticaRESUMO
Microsomal glutathione transferase 1 (MGST1) is a membrane bound enzyme involved in the detoxification of reactive electrophiles and protection of membranes from oxidative stress. The enzyme displays an unusual and broad subcellular distribution with especially high levels in the endoplasmic reticulum (ER) and outer mitochondrial membrane (OMM). Here we examined the molecular basis for this dual distribution. We hypothesized that the amphipathic properties of the first transmembrane segment (TMS), that contains a positively charged lysine (K25), is a central feature guiding dual targeting. The lysine-25 was substituted to alanine by site directed mutagenesis. We also increased the amphipathic character of the helix by inserting an additional lysine either one turn above or below K25. Expressing these constructs in simian COS cells, and analyzing subcellular distribution by immunocytochemistry, we observed an increased ER targeting of K25A-MGST1. In contrast I22K-MGST1 and F28K-MGST1 displayed pronounced mitochondrial targeting. By using in vitro transcription-translation we examined whether insertion of WT-MGST1 into ER is co- or post-translational and provide evidence for the former. In the same experimental set-up, mitochondrial insertion was shown to depend on the positive charge. Together these results show that removing the positive charge of lysine-25 promotes ER incorporation, but counteracts mitochondrial insertion. In contrast, introducing an extra lysine in the first TMS of MGST1 had opposite effects. The amphipathic character of the first TMS thus constitutes a molecular determinant for the dual targeting of MGST1. Broad subcellular distribution is consistent with a physiological role in protection from reactive intermediates and oxidative stress.
Assuntos
Glutationa Transferase/metabolismo , Microssomos Hepáticos/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Estresse Oxidativo/fisiologiaRESUMO
Neuritic abnormalities are a major hallmark of Alzheimer's disease (AD) pathology. Accumulation of beta-amyloid protein (Abeta) in the brain causes changes in neuritic processes in individuals with this disease. In this study, we show that Abeta decreases neurite outgrowth from SH-SY5Y human neuroblastoma cells. To explore molecular pathways by which Abeta alters neurite outgrowth, we examined the activation and localization of RhoA and Rac1 which regulate the level and phosphorylation of the collapsin response mediator protein-2 (CRMP-2). Abeta increased the levels of the GTP-bound (active) form of RhoA in SH-SY5Y cells. This increase in GTP-RhoA correlated with an increase in an alternatively spliced form of CRMP-2 (CRMP-2A) and its threonine phosphorylated form. Both a constitutively active form of Rac1 (CA-Rac1) and the Rho kinase inhibitor, Y27632, decreased levels of the CRMP-2A variant and decreased threonine phosphorylation caused by Abeta stimulation. The amount of tubulin bound to CRMP-2 was decreased in the presence of Abeta but Y27632 increased the levels of tubulin bound to CRMP-2. Increased levels of both RhoA and CRMP-2 were found in neurons surrounding amyloid plaques in the cerebral cortex of the APP(Swe) Tg2576 mice. We found that there was an increase in threonine phosphorylation of CRMP-2 in Tg2576 mice and the increase correlated with a decrease in the ability of CRMP-2 to bind tubulin. The results suggest that Abeta-induced neurite outgrowth inhibition may be initiated through a mechanism in which Abeta causes an increase in Rho GTPase activity which, in turn, phosphorylates CRMP-2 to interfere with tubulin assembly in neurites.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/fisiologia , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Tamanho Celular/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neuritos/metabolismo , Neuritos/ultraestrutura , Fosforilação , Transdução de Sinais , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
Ap(4)A hydrolases are Nudix enzymes that regulate intracellular dinucleoside polyphosphate concentrations, implicating them in a range of biological events, including heat shock and metabolic stress. We have demonstrated that ATP x MgF(x) can be used to mimic substrates in the binding site of Ap(4)A hydrolase from Lupinus angustifolius and that, unlike previous substrate analogs, it is in slow exchange with the enzyme. The three-dimensional structure of the enzyme complexed with ATP x MgF(x) was solved and shows significant conformational changes. The substrate binding site of L. angustifolius Ap(4)A hydrolase differs markedly from the two previously published Nudix enzymes, ADP-ribose pyrophosphatase and MutT, despite their common fold and the conservation of active site residues. The majority of residues involved in substrate binding are conserved in asymmetrical Ap(4)A hydrolases from pathogenic bacteria, but are absent in their human counterparts, suggesting that it might be possible to generate compounds that target bacterial, but not human, Ap(4)A hydrolases.
Assuntos
Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/metabolismo , Trifosfato de Adenosina/metabolismo , Fluoretos/metabolismo , Compostos de Magnésio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Accumulation of the neurotoxic beta-amyloid protein (Abeta) in the brain is a key step in the pathogenesis of Alzheimer's disease (AD). Although transgenic mouse models of AD have been developed, there is a clear need for a validated animal model of Abeta-induced amnesia which can be used for toxicity testing and drug development. Intracranial injections of Abeta(1-42) impaired memory in a single trial discriminative avoidance learning task in chicks. Memory inhibition was closely associated with the state of aggregation of the Abeta peptide, and a scrambled-sequence of Abeta(1-42) peptide failed to impair memory. Abeta had little effect on labile (short-term and intermediate) memory, but blocked consolidation of memory into long-term storage mimicking the type of anterograde amnesia that occurs in early AD. Since noradrenaline exerts a modulatory influence on labile memory in the chick, we examined the effects of two beta-adrenoceptor (AR) agonists on Abeta-induced amnesia. A beta(3)-AR agonist (CL316243), but not a beta(2)-AR agonist, rescued Abeta-induced memory loss, suggesting the need for further studies on the role of beta(3)-ARs in AD.
Assuntos
Agonistas Adrenérgicos/farmacologia , Agonistas de Receptores Adrenérgicos beta 3 , Peptídeos beta-Amiloides/antagonistas & inibidores , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Fragmentos de Peptídeos/antagonistas & inibidores , Agonistas Adrenérgicos/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Amnésia Anterógrada/induzido quimicamente , Amnésia Anterógrada/tratamento farmacológico , Amnésia Anterógrada/fisiopatologia , Peptídeos beta-Amiloides/toxicidade , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Encéfalo/fisiopatologia , Química Encefálica/efeitos dos fármacos , Química Encefálica/fisiologia , Galinhas , Dioxóis/farmacologia , Dioxóis/uso terapêutico , Modelos Animais de Doenças , Transtornos da Memória/fisiopatologia , Testes Neuropsicológicos , Fragmentos de Peptídeos/toxicidade , Receptores Adrenérgicos beta 3/metabolismo , Resultado do TratamentoRESUMO
Accumulation of the amyloid protein (Abeta) in the brain is an important step in the pathogenesis of Alzheimer's disease. However, the mechanism by which Abeta exerts its neurotoxic effect is largely unknown. It has been suggested that the peptide can bind to the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). In this study, we examined the binding of Abeta1-42 to endogenous and recombinantly expressed alpha7nAChRs. Abeta1-42 did neither inhibit the specific binding of alpha7nAChR ligands to rat brain homogenate or slice preparations, nor did it influence the activity of alpha7nAChRs expressed in Xenopus oocytes. Similarly, Abeta1-42 did not compete for alpha-bungarotoxin-binding sites on SH-SY5Y cells stably expressing alpha7nAChRs. The effect of the Abeta1-42 on tau phosphorylation was also examined. Although Abeta1-42 altered tau phosphorylation in alpha7nAChR-transfected SH-SY5Y cells, the effect of the peptide was unrelated to alpha7nAChR expression or activity. Binding studies using surface plasmon resonance indicated that the majority of the Abeta bound to membrane lipid, rather than to a protein component. Fluorescence anisotropy experiments indicated that Abeta may disrupt membrane lipid structure or fluidity. We conclude that the effects of Abeta are unlikely to be mediated by direct binding to the alpha7nAChR. Instead, we speculate that Abeta may exert its effects by altering the packing of lipids within the plasma membrane, which could, in turn, influence the function of a variety of receptors and channels on the cell surface.