Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 214(2): 107859, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439644

RESUMO

The nitrilase superfamily enzymes from Pyrococcus abyssi and Pyrococcus horikoshii hydrolyze several different amides. No nitriles that we tested were hydrolyzed by either enzyme. Propionamide and acetamide were the most rapidly hydrolyzed of all the substrates tested. Amide substrate docking studies on the wild-type and C146A variant P. horikoshii enzymes suggest a sequence in which the incoming amide substrate initially hydrogen bonds to the amino group of Lys-113 and the backbone carbonyl of Asn-171. When steric hindrance is relieved by replacing the cysteine with alanine, the amide then docks such that the amino group of Lys-113 and the backbone amide of Phe-147 are hydrogen-bonded to the substrate carbonyl oxygen, while the backbone carbonyl oxygen of Asn-171 and the carboxyl oxygen of Glu-42 are hydrogen-bonded to the amino group of the substrate. Here, we confirm the location of the acetamide and glutaramide ligands experimentally in well-resolved crystal structures of the C146A mutant of the enzyme from P. horikoshii. This ligand location suggests that there is no direct interaction between the substrate amide and the other active site glutamate, Glu-120, and supports an active-site geometry leading to the formation of the thioester intermediate via an attack on the si-face of the amide by the sulfhydryl of the active site cysteine.


Assuntos
Pyrococcus horikoshii , Acetamidas , Amidas , Amidoidrolases/química , Amidoidrolases/genética , Cisteína/química , Hidrogênio , Ligantes , Oxigênio , Especificidade por Substrato
2.
Adv Exp Med Biol ; 1340: 187-203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569026

RESUMO

Heat shock proteins are conserved molecules whose main role is to facilitate protein folding. However, they are also implicated in protein trafficking, protein assembly/disassembly, and functional maturation of proteins implicated in several biochemical pathways, including signal transduction. The role of heat shock proteins in the development of malaria parasites has recently become a subject of enormous interest. This is they do not only serve a cytoprotective role to ensure parasite survival but are implicated in the trafficking of several parasite proteins that are exported to the infected host red blood cell. Indeed, several heat shock proteins are also exported to the infected human red blood cell. In light of this, heat shock proteins along with other molecules are thought to modify the host cell, thus regulating the pathogenicity of malaria parasites. Even more important is their role in augmenting parasite resistance against antimalarial drugs. In light of the essential functions of several of these molecules in the development of malaria parasites, coupled with their role in antimalarial drug resistance, there is growing interest to target them as part of antimalarial drug discovery efforts. Several antimalarial compounds used so far originate from natural products. It is only logical that in our pursuit to identify small molecule inhibitors targeting heat shock proteins of malaria parasites, we turn to nature for answers and possible clues. In the current narrative, we focus attention on features of heat shock proteins of malaria parasites that make them amenable to targeting. In addition, we discuss various plant products that have been identified as sources of antimalarial compounds that target heat shock proteins. The current narrative seeks to inspire novel drug discovery experts, especially those working on natural compounds to focus on heat shock proteins as possible antimalarial targets. We further discuss the challenges of taking this route as part of our growing arsenal against malaria.


Assuntos
Antimaláricos , Malária , Antimaláricos/farmacologia , Bioprospecção , Descoberta de Drogas , Proteínas de Choque Térmico , Humanos , Malária/tratamento farmacológico , Plasmodium falciparum
3.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672387

RESUMO

Parasitic organisms especially those of the Apicomplexan phylum, harbour a cytosol localised canonical Hsp70 chaperone. One of the defining features of this protein is the presence of GGMP repeat residues sandwiched between α-helical lid and C-terminal EEVD motif. The role of the GGMP repeats of Hsp70s remains unknown. In the current study, we introduced GGMP mutations in the cytosol localised Hsp70-1 of Plasmodium falciparum (PfHsp70-1) and a chimeric protein (KPf), constituted by the ATPase domain of E. coli DnaK fused to the C-terminal substrate binding domain of PfHsp70-1. A complementation assay conducted using E. coli dnaK756 cells demonstrated that the GGMP motif was essential for chaperone function of the chimeric protein, KPf. Interestingly, insertion of GGMP motif of PfHsp70-1 into DnaK led to a lethal phenotype in E. coli dnaK756 cells exposed to elevated growth temperature. Using biochemical and biophysical assays, we established that the GGMP motif accounts for the elevated basal ATPase activity of PfHsp70-1. Furthermore, we demonstrated that this motif is important for interaction of the chaperone with peptide substrate and a co-chaperone, PfHop. Our findings suggest that the GGMP may account for both the specialised chaperone function and reportedly high catalytic efficiency of PfHsp70-1.


Assuntos
Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Mutação , Plasmodium falciparum , Proteínas de Protozoários/genética , Dicroísmo Circular , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP72/química , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/metabolismo , Estabilidade Proteica , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Aminoácidos , Espectrometria de Fluorescência
4.
Proteins ; 86(11): 1189-1201, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30183110

RESUMO

Plasmodium falciparum, the main agent of malaria expresses six members of the heat shock protein 70 (Hsp70) family. Hsp70s serve as protein folding facilitators in the cell. Amongst the six Hsp70 species that P. falciparum expresses, Hsp70-x (PfHsp70-x), is partially exported to the host red blood cell where it is implicated in host cell remodeling. Nearly 500 proteins of parasitic origin are exported to the parasite-infected red blood cell (RBC) along with PfHsp70-x. The role of PfHsp70-x in the infected human RBC remains largely unclear. One of the defining features of PfHsp70-x is the presence of EEVN residues at its C-terminus. In this regard, PfHsp70-x resembles canonical eukaryotic cytosol-localized Hsp70s which possess EEVD residues at their C-termini in place of the EEVN residues associated with PfHsp70-x. The EEVD residues of eukaryotic Hsp70s facilitate their interaction with co-chaperones. Characterization of the role of the EEVN residues of PfHsp70-x could provide insights into the function of this protein. In the current study, we expressed and purified recombinant PfHsp70-x (full length) and its EEVN minus form (PfHsp70-xT ). We then conducted structure- function assays towards establishing the role of the EEVN motif of PfHsp70-x. Our findings suggest that the EEVN residues of PfHsp70-x are important for its ATPase activity and chaperone function. Furthermore, the EEVN residues are crucial for the direct interaction between PfHsp70-x and human Hsp70-Hsp90 organizing protein (hHop) in vitro. Hop facilitates functional cooperation between Hsp70 and Hsp90. However, it remains to be established if PfHsp70-x and hHsp90 cooperate in vivo.


Assuntos
Proteínas de Choque Térmico HSP70/química , Malária Falciparum/parasitologia , Plasmodium falciparum/química , Proteínas de Protozoários/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Ligação Proteica , Dobramento de Proteína , Mapas de Interação de Proteínas , Proteínas de Protozoários/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Molecules ; 22(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206141

RESUMO

Heat shock proteins (Hsps), amongst them, Hsp70 and Hsp90 families, serve mainly as facilitators of protein folding (molecular chaperones) of the cell. The Hsp70 family of proteins represents one of the most important molecular chaperones in the cell. Plasmodium falciparum, the main agent of malaria, expresses six Hsp70 isoforms. Two (PfHsp70-1 and PfHsp70-z) of these localize to the parasite cytosol. PHsp70-1 is known to occur in a functional complex with another chaperone, PfHsp90 via a co-chaperone, P. falciparum Hsp70-Hsp90 organising protein (PfHop). (-)-Epigallocatechin-3-gallate (EGCG) is a green tea constituent that is thought to possess antiplasmodial activity. However, the mechanism by which EGCG exhibits antiplasmodial activity is not fully understood. A previous study proposed that EGCG binds to the N-terminal ATPase domain of Hsp70. In the current study, we overexpressed and purified recombinant forms of two P. falciparum cytosol localized Hsp70s (PfHsp70-1 and PfHsp70-z), and PfHop, a co-chaperone of PfHsp70-1. Using the surface plasmon resonance approach, we demonstrated that EGCG directly binds to the two Hsp70s. We further observed that binding of EGCG to the two proteins resulted in secondary and tertiary conformational changes. In addition, EGCG inhibited the ATPase and chaperone function of the two proteins. Furthermore, EGCG abrogated association of the two Hsp70s with their functional partners. Using parasites cultured in vitro at the blood stages, we observed that 2.9 µM EGCG suppressed 50% P. falciparum parasite growth (IC50). Our findings demonstrate that EGCG directly binds to PfHsp70-1 and PfHsp70-z to inhibit both the ATPase and chaperone functions of the proteins. Our study constitutes the first direct evidence suggesting that the antiplasmodial activity of EGCG is at least in part accounted for by its inhibition of Hsp70 function.


Assuntos
Antimaláricos/farmacologia , Catequina/análogos & derivados , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Sítios de Ligação , Catequina/química , Catequina/farmacologia , Clonagem Molecular , Citosol/efeitos dos fármacos , Citosol/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Concentração Inibidora 50 , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Biomol Concepts ; 13(1): 220-229, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35437978

RESUMO

The exposure of organisms and cells to unfavorable conditions such as increased temperature, antibiotics, reactive oxygen species, and viruses could lead to protein misfolding and cell death. The increased production of proteins such as heat shock proteins (HSPs) and polyamines has been linked to protein misfolding sequestration, thus maintaining, enhancing, and regulating the cellular system. For example, heat shock protein 40 (Hsp40) works hand in hand with Hsp70 and Hsp90 to successfully assist the newly synthesized proteins in folding properly. On the other hand, polyamines such as putrescine, spermidine, and spermine have been widely studied and reported to keep cells viable under harsh conditions, which are also involved in cell proliferation, differentiation, and growth. Polyamines are found in all living organisms, including humans and viruses. Some organisms have developed a mechanism to hijack mammalian host cell machinery for their benefit like viruses need polyamines for infection. Therefore, the role of HSPs and polyamines in SARS-CoV-2 (COVID-19) viral infection, how these molecules could delay the effectiveness of the current treatment in the market, and how COVID-19 relies on the host molecules for its successful infection are reviewed.


Assuntos
COVID-19 , Viroses , Animais , Proteínas de Choque Térmico , Humanos , Mamíferos/metabolismo , Poliaminas/metabolismo , SARS-CoV-2 , Viroses/metabolismo
7.
Front Mol Biosci ; 9: 947203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177352

RESUMO

Plasmodium falciparum Hsp70-1 (PfHsp70-1; PF3D7_0818900) and PfHsp90 (PF3D7_0708400) are essential cytosol localized chaperones of the malaria parasite. The two chaperones form a functional complex via the adaptor protein, Hsp90-Hsp70 organizing protein (PfHop [PF3D7_1434300]), which modulates the interaction of PfHsp70-1 and PfHsp90 through its tetracopeptide repeat (TPR) domains in a nucleotide-dependent fashion. On the other hand, PfHsp70-1 and PfHsp90 possess C-terminal EEVD and MEEVD motifs, respectively, which are crucial for their interaction with PfHop. By coordinating the cooperation of these two chaperones, PfHop plays an important role in the survival of the malaria parasite. 2-Phenylthynesulfonamide (PES) is a known anti-cancer agent whose mode of action is to inhibit Hsp70 function. In the current study, we explored the antiplasmodial activity of PES and investigated its capability to target the functions of PfHsp70-1 and its co-chaperone, PfHop. PES exhibited modest antiplasmodial activity (IC50 of 38.7 ± 0.7 µM). Furthermore, using surface plasmon resonance (SPR) analysis, we demonstrated that PES was capable of binding recombinant forms of both PfHsp70-1 and PfHop. Using limited proteolysis and intrinsic fluorescence-based analysis, we showed that PES induces conformational changes in PfHsp70-1 and PfHop. In addition, we demonstrated that PES inhibits the chaperone function of PfHsp70-1. Consequently, PES abrogated the association of the two proteins in vitro. Our study findings contribute to the growing efforts to expand the arsenal of potential antimalarial compounds in the wake of growing parasite resistance against currently used drugs.

8.
PLoS One ; 15(4): e0226657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343703

RESUMO

Plasmodium falciparum causes the most lethal form of malaria. The cooperation of heat shock protein (Hsp) 70 and 90 is thought to facilitate folding of select group of cellular proteins that are crucial for cyto-protection and development of the parasites. Hsp70 and Hsp90 are brought into a functional complex that allows substrate exchange by stress inducible protein 1 (STI1), also known as Hsp70-Hsp90 organising protein (Hop). P. falciparum Hop (PfHop) co-localises and occurs in complex with the parasite cytosolic chaperones, PfHsp70-1 and PfHsp90. Here, we characterised the structure of recombinant PfHop using synchrotron radiation circular dichroism (SRCD) and small-angle X-ray scattering. Structurally, PfHop is a monomeric, elongated but folded protein, in agreement with its predicted TPR domain structure. Using SRCD, we established that PfHop is unstable at temperatures higher than 40°C. This suggests that PfHop is less stable at elevated temperatures compared to its functional partner, PfHsp70-1, that is reportedly stable at temperatures as high as 80°C. These findings contribute towards our understanding of the role of the Hop-mediated functional partnership between Hsp70 and Hsp90.


Assuntos
Proteínas de Choque Térmico/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Cristalografia por Raios X , Humanos , Malária Falciparum/parasitologia , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química
10.
PLoS One ; 10(4): e0121243, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837593

RESUMO

A number of previously reported studies suggest that synthetic gold nanoparticles (AuNPs) are capable of stabilising proteins against heat stress in vitro. However, it remains to be understood if AuNPs confer stability to proteins against cellular stress in vivo. Heat shock proteins (Hsps) are conserved molecules whose main role is to facilitate folding of other proteins (chaperone function). Hsp70 (called DnaK in prokaryotes) is one of the most prominent molecular chaperones. Since gold nanoparticles exhibit chaperone-like function in vitro, we investigated the effect of citrate-coated gold nanoparticles on the growth of E. coli BB1553 cells that possess a deleted dnaK gene. We further investigated the effects of the AuNPs on the solubility of the E. coli BB1553 proteome. E. coli BB1553 cells exposed to AuNPs exhibited cellular defects such as filamentation and plasma membranes pulled off the cell wall. The toxic effects of the AuNPs were alleviated by transforming the E. coli BB1553 cells with a construct expressing DnaK. We also noted that cells in which DnaK was restored exhibited distinct zones to which the nanoparticles were restricted. Our study suggests a role for DnaK in alleviating nanoparticle induced stress in E. coli.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Ouro/toxicidade , Proteínas de Choque Térmico HSP70/genética , Nanopartículas Metálicas/toxicidade , Proteoma/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/ultraestrutura , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/ultraestrutura , Ácido Cítrico/química , Escherichia coli/genética , Escherichia coli/ultraestrutura , Teste de Complementação Genética , Ouro/química , Proteínas de Choque Térmico HSP70/deficiência , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Plasmídeos/química , Plasmídeos/metabolismo , Proteoma/metabolismo , Solubilidade , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA