Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614324

RESUMO

Cancer is a leading cause of death worldwide, its genesis and progression are caused by homeostatic errors, and reactive oxygen species play a major role in promoting aberrant cancer homeostasis. In this scenario, curcumin could be an interesting candidate due to its versatile antioxidant, anti-inflammatory, anti-tumor, anti-HIV, and anti-infection properties. Nonetheless, the major problem related to its use is its poor oral bioavailability, which can be overcome by encapsulating it into small particles, such as hydrogel beads containing mesoporous silica. In this work, various systems have been synthesized: starting from mesoporous silica glasses (MGs), cerium-containing MGs have been produced; then, these systems have been loaded with 4 to 6% of curcumin. Finally, various MGs at different compositions have been included in alginate beads. In vitro studies showed that these hybrid materials enable the stabilization and effective delivery of curcumin and that a synergic effect can be achieved if Ce3+/Ce4+ and curcumin are both part of the beads. From swelling tests, it is possible to confirm a controlled curcumin release compartmentalized into the gastrointestinal tract. For all beads obtained, a curcumin release sufficient to achieve the antioxidant threshold has been reached, and a synergic effect of cerium and curcumin is observed. Moreover, from catalase mimetic activity tests, we confirm the well-known catalytic activity of the couple Ce3+/Ce4+. In addition, an extremely good radical scavenging effect of curcumin has been demonstrated. In conclusion, these systems, able to promote an enzymatic-like activity, can be used as drug delivery systems for curcumin-targeted dosing.


Assuntos
Alginatos , Antineoplásicos , Antioxidantes , Cério , Curcumina , Alginatos/química , Antioxidantes/administração & dosagem , Cério/administração & dosagem , Curcumina/administração & dosagem , Dióxido de Silício/química , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos
2.
Phys Chem Chem Phys ; 20(36): 23507-23514, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30183019

RESUMO

The addition of cerium oxide to bioactive glasses, important materials for bone tissue regeneration, has been shown to induce multifunctionality, combining a significant bioactivity with antioxidant properties. We provide a real time investigation of the evolution of the electronic properties of highly diluted cerium ions in a liquid environment containing hydrogen peroxide - the most abundant reactive oxygen species in living cells. This challenging task is undertaken by means of high-energy resolution fluorescence detected by X-ray absorption near-edge spectroscopy at the Ce L3 edge. We investigate samples with variable compositions and different morphologies. We relate the observed spectroscopic changes not only to variations in the concentration of the two Ce oxidation states in the samples, but also to changes in the local atomic environment of Ce ions, providing a clear picture of the role of cerium ions in the dissociation of hydrogen peroxide. The obtained results contribute to the understanding of the mechanisms that come into play in the process and provide a basis for the optimization of the functionalities of this class of materials.


Assuntos
Cério/química , Peróxido de Hidrogênio/química , Catálise , Vidro/química , Espectrometria de Fluorescência
3.
Langmuir ; 30(16): 4703-15, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24701982

RESUMO

The aim of the present contribution is to prepare a functionalized bioactive glass potentially useful as prosthetic material, but also able to release organic molecules in response to a change of the pH environment. By this approach it is possible to develop devices which can be used for a triggered drug release in response to specific stimuli; this is an attractive research field, in order to avoid either systemic and/or local toxic effects of drugs. In particular, in the present paper we report data related to the development of a new formulation of bioactive glasses, their functionalization with organic molecules to obtain a pH-sensitive bond, their physicochemical characterization and in vitro bioactivity in simulated biological fluids (SBF), and organic molecule delivery tests at different pH. The glass functionalization, by means of a covalent reaction, allows us to produce a model of pH-responsive bioactive biomaterial: when it is exposed to specific pH changes, it can favor the release of the organic molecules directly at the target site. Cysteamine and 5-aminofluorescein are used as model molecules to simulate a drug. The materials, before and after the different functionalization steps and in vitro release tests at different pH, have been characterized by means of different experimental techniques such as X-ray powder diffraction (XRPD), Raman, FTIR and fluorescence spectroscopies, N2 adsorption, thermogravimetric (TGA) and elemental analysis.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Vidro/química , Animais , Doenças Ósseas/tratamento farmacológico , Cisteamina/química , Fluoresceínas/química , Humanos , Concentração de Íons de Hidrogênio
4.
J Mater Sci Mater Med ; 25(10): 2243-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24722810

RESUMO

Bioceramics, such as silica-based glasses, are widely used in bone and teeth restoration. Nowadays, the association between nanotechnology and pharmacology is one of the most promising research fields in cancer therapy. The advanced processing methods and new chemical strategies allow the incorporation of drugs within them or on their functionalized surfaces. Bioceramics can act as local drug delivery systems to treat bone and teeth diseases. The present paper reports data related to the development of a pH-stimuli responsive bioactive glass. The glass conjugation with 5-aminofluorescein (5-AF), through a pH-sensitive organic spacer, allows to produce a pH-responsive bioactive biomaterial: when it is exposed to specific pH changes, it can favour the release of 5-AF directly at the target site. 5-AF has been chosen as a simple, low cost, non toxic model to simulate doxorubicin, an anticancer drug. As doxorubicin, 5-AF contains an amino group in its structure in order to form an amide bond with the carboxylic functionalities of the glass. Raman spectroscopy and thermal analysis confirm the glass conjugation of 5-AF by means of an amide bond; the amount of 5-AF loaded was very high (≈ 65 and 44 wt%). The release tests at two different pH (4.2 and 7.4) show that the amount of released 5-AF is higher at acid pH with respect to physiological one. This preliminary datum evidenced that a pH-sensitive drug delivery system has been developed. The low amount of 5-AF released (<1 wt% of the total 5-AF) is due to the very low solubility of 5-AF in aqueous medium. This disadvantage, may be overcome in a dynamic environment (physiological conditions), where it is possible to obtain a drug release system ensuring an effective therapeutic dose for long times and, at the same time, avoiding the drug toxicity.


Assuntos
Materiais Biocompatíveis/síntese química , Portadores de Fármacos/síntese química , Fluoresceínas/química , Vidro/química , Sondas Moleculares/síntese química , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Maleatos/química , Anidridos Maleicos/química , Sondas Moleculares/química , Propilaminas , Silanos/química , Estimulação Química
5.
Materials (Basel) ; 17(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255541

RESUMO

Considering the increase in patients who suffer from osteoporosis and the bone defects that occur in these patients, bone tissue regeneration is a promising option to solve this problem. To achieve a synergistic effect between the synthesis of a proper structure and bioactive/pharmaceutical activity, ions with a physiological effect can be added to silica structures, such as Ca2+, thanks to its bioactive behavior, and Ga3+ for its antibacterial and anticancer action. In this work, the synthesis of large pore mesoporous silica (LPMS), potential bioactive glasses containing Ca2+ and Ga3+, has been studied. Corresponding structures, in terms of composition, have been synthesized following the Sol-Gel EISA (Evaporation Induced Self-Assembly) process (obtaining Classical Mesoporous Silica, MS). Pore structure characterization of LPMSs and MSs has been performed using N2 adsorption/desorption and Hg-porosimetry, showing the presence of pores for LPMSs in the range of 20-60 and 200-600 nm. Nisin, a polycyclic antibacterial peptide, has been used for load tests. The load and release tests performed highlight a higher loading and releasing, doubled for LPMSs if compared to MSs. To confirm the maintenance of the structure of LPMSs and their mechanical strength and resistance, scanning electron microscopy images were acquired before and after release tests. Ca and Ga release in SBF has been studied through inductively coupled plasma-optical emission spectroscopy (ICP-OES), showing a particularly high release of these ions performed with LPMSs. The bioactive behavior of Ca-containing structures has been confirmed using FT-IR (Fourier-transform infrared spectroscopy), SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscopy), and X-ray powder diffraction (XRDP). In conclusion, LPMSs showed better loading and releasing properties compared with classical MS and better release in terms of active ions. In addition, it has also been demonstrated that LPMSs have bioactive behavior (a well-known characteristic of MSs).

6.
Waste Manag ; 175: 339-347, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241823

RESUMO

The constantly increasing demand of Rare Earth Elements (REEs) made them to be part of the so-called "critical elements" indispensable for the energy transition. The monopoly of only a few countries, the so-called balance problem between demand and natural abundance, and the need to limit the environmental costs of their mining, stress the necessity of a recycling policy of these elements. Different methods have been tested for REEs recovery. Despite the well-known ion-exchange properties of zeolites, just few preliminary works investigated their application for REEs separation and recycle. In this work we present a double ion exchange experiment on a NH4-13X zeolite, aimed at the recovery of different REEs from solutions mimicking the composition of liquors obtained from the leaching of spent fluorescent lamps. The results showed that the zeolite was able to exchange all the REEs tested, but the exchange capacity was different: despite Y being the more concentrated REE in the solutions, the cation exchange was lower than less concentrated ones (16 atoms p.u.c. vs 21 atoms for Ce and La solutions), suggesting a possible selectivity. In order to recover REEs from the zeolite, a second exchange with an ammonium solution was performed. The analyses of the zeolites show that almost all of Ce and Eu remain in the zeolite, while nearly half of La and Y are released. This, once again, suggests a possible selective release of REEs and open the possibility for a recovery process in which Rare Earths can be effectively separated.


Assuntos
Utensílios Domésticos , Metais Terras Raras , Zeolitas , Metais Terras Raras/análise , Mineração , Reciclagem
7.
Materials (Basel) ; 16(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37297286

RESUMO

The synthesis of a scaffold that can accommodate big molecules with a pharmaceutical role is important to shield them and maintain their biological activity. In this field, silica particles with large pores (LPMS) are innovative supports. Large pores allow for the loading of bioactive molecules inside the structure and contemporarily their stabilization and protection. These purposes cannot be achieved using classical mesoporous silica (MS, pore size 2-5 nm), because their pores are not big enough and pore blocking occurs. LPMSs with different porous structures are synthesized starting from an acidic water solution of tetraethyl orthosilicate reacting with pore agents (Pluronic® F127 and mesitylene), performing hydrothermal and microwave-assisted reactions. Time and surfactant optimization were performed. Loading tests were conducted using Nisin as a reference molecule (polycyclic antibacterial peptide, with dimensions of 4-6 nm); UV-Vis analyses on loading solutions were performed. For LPMSs, a significantly higher loading efficiency (LE%) was registered. Other analyses (Elemental Analysis, Thermogravimetric Analysis and UV-Vis) confirmed the presence of Nisin in all the structures and its stability when loaded on them. LPMSs showed a lower decrease in specific surface area if compared to MS; in terms of the difference in LE% between samples, it is explained considering the filling of pores for LPMSs, a phenomenon that is not allowed for MSs. Release studies in simulated body fluid highlight, only for LPMSs, a controlled release, considering the longer time scale of release. Scanning Electron Microscopy images acquired before and after release tests shows the LPMSs' maintenance of the structure, demonstrating strength and mechanical resistance of structures. In conclusion, LPMSs were synthesized, performing time and surfactant optimization. LPMSs showed better loading and releasing properties with respect to classical MS. All collected data confirm a pore blocking for MS and an in-pore loading for LPMS.

8.
J Mater Sci Mater Med ; 23(3): 639-48, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22212379

RESUMO

Potentially bioactive fluorine-containing glasses of formula 46.2SiO(2)·24.3Na(2)O·(26.9-x)CaO·2.6P(2)O(5)·xCaF(2) [x = (0), 5, 10, 15] have been studied: the study was carried out as a function of fluorine percentage, dimensions and time of soaking in SBF. The results are compared to those obtained in the same conditions for Bioglass(®) 45S5. Due to the high number and different kind of variables/conditions explored by this set of data, the results are rationalized for the first time by means of multivariate data analysis (MDA); in this way it is possible to classify the behaviour of bioglasses toward bioactivity. The presence of fluorine does not inhibit the formation of HA; in particular, for a fast bioactivity (in term of HA crystallization) it will be better to have large particle size or slabs, while for a fast dissolution fine particle sizes should be preferred.


Assuntos
Líquidos Corporais , Flúor/química , Vidro , Análise Multivariada , Análise de Componente Principal
9.
J Mater Sci Mater Med ; 23(12): 2867-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23053798

RESUMO

The present study is aimed at investigating the contribution of two biologically important cations, Mg(2+) and Sr(2+), when substituted into the structure of hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2),HA). The substituted samples were synthesized by an aqueous precipitation method that involved the addition of Mg(2+)- and Sr(2+)-containing precursors to partially replace Ca(2+) ions in the apatite structure. Eight substituted HA samples with different concentrations of single (only Mg(2+)) or combined (Mg(2+) and Sr(2+)) substitution of cations have been investigated and the results compared with those of pure HA. The obtained materials were characterized by X-ray powder diffraction, specific surface area and porosity measurements (N(2) adsorption at 77 K), FT-IR and Raman spectroscopies and scanning electron microscopy. The results indicate that the co-substitution gives rise to the formation of HA and ß-TCP structure types, with a variation of their cell parameters and of the crystallinity degree of HA with varying levels of substitution. An evaluation of the amount of substituents allows us to design and prepare BCP composite materials with a desired HA/ß-TCP ratio.


Assuntos
Durapatita/química , Hidroxiapatitas/química , Íons , Magnésio/química , Estrôncio/química , Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Cátions , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Porosidade , Pós/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Propriedades de Superfície , Temperatura , Difração de Raios X
10.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890151

RESUMO

Curcumin is known for its therapeutic properties; among these, antioxidant, anti-inflammatory and anti-cancer ones stand out. Besides, curcumin metal complexes have shown widespread application in medicine and can be exploited as lead structures for developing metal-based drugs. Unfortunately, curcumin is poorly bioavailable, mainly due to its instability in physiological conditions; this weakness is tightly connected to the presence of the ß-diketo moiety undergoing tautomeric equilibrium. Stability and metal-chelating ability can be tuned by modulating the electronic effects and steric hindrance close to the ß-diketo moiety; in addition, formation of a metal complex shifts the tautomeric equilibrium towards the ß-keto-enol form and increases stability in biological media. Among the metals used in clinical therapy, gallium nitrate has shown to have significant antitumor activity against non-Hodgkin lymphoma and bladder cancer, thus indicating that gallium-based drugs have potential for further development as antineoplastic agents with improved therapeutic activity. Curcuminoids have demonstrated high affinity for gallium(III), allowing the formation of stable positively charged M:L 1:2 ß-diketonate complexes that benefit from the therapeutic activity of both the metal and the ligand. Seven new curcumin derivatives were synthesized and completely characterized. The new derivatives retain the solvent-dependent keto-enol tautomerism, with the prevalence of the diketo form in aqueous solution. Enhanced stability in simulated physiological conditions was observed in comparison to the lead compound curcumin. The presence of Ga3+ anticipates the dissociation of the enolic proton, allowing chelate complex formation, and simultaneously it shifts the tautomeric equilibrium towards the keto-enol form. A complete 1H/13C NMR and UV-Vis study was performed to define the metal-to-ligand stoichiometry ratio and the overall stability constants. In addition, we demonstrated that some of the derivatives have increased antiproliferative activity on colon cancer cells compared to curcumin and antioxidant properties. On the whole, the synthesized curcumin-based molecules may act as new gallium(III) chelators with improved stability with respect to curcumin and could open interesting perspectives for the development of novel therapeutic agents for cancer.

11.
ACS Biomater Sci Eng ; 7(9): 4388-4401, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34468119

RESUMO

Bioactive glasses (BGs) for biomedical applications are doped with therapeutic inorganic ions (TIIs) in order to improve their performance and reduce the side effects related to the surgical implant. Recent literature in the field shows a rekindled interest toward rare earth elements, in particular cerium, and their catalytic properties. Cerium-doped bioactive glasses (Ce-BGs) differ in compositions, synthetic methods, features, and in vitro assessment. This review provides an overview on the recent development of Ce-BGs for biomedical applications and on the evaluation of their bioactivity, cytocompatibility, antibacterial, antioxidant, and osteogenic and angiogenic properties as a function of their composition and physicochemical parameters.


Assuntos
Cério , Antibacterianos/farmacologia , Catálise , Vidro , Osteogênese
12.
Langmuir ; 26(12): 10303-14, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20429543

RESUMO

Bioactive glasses containing gold nanoparticles (AuNPs) have been synthesized via the sol-gel route using HAuCl(4) x 3 H(2)O as gold precursor. The formation process of AuNPs was studied as a function of the thermal treatment, which induces nucleation of Au particles and influences their nature, optical properties, shape, size, and distribution. The physicochemical characterization indicates that the sample treated at 600 degrees C presents the best characteristics to be used as a bioactive material, namely high surface area, high amount of AuNPs located at the glass surface, presence of micropores, and abundant surface OH groups. In the case of samples either aged at 60 degrees C or calcined at 150 degrees C, AuNPs just begin their formation, and at this stage the gel is not completely polymerized and dried yet. A thermal treatment at higher temperatures (900 degrees C) causes the aggregation of AuNPs, forming "AuMPs" (i.e., Au microparticles) in a densified glass-ceramic material with low surface area, absence of pores, and low number of surface OH groups. These features induce in the glass-ceramic materials treated at high-temperatures a lower bioactivity (evidenced by SBF reaction), as compared with that exhibited by the glass samples treated at 600 degrees C.


Assuntos
Vidro/química , Ouro , Nanopartículas Metálicas/química , Temperatura , Estrutura Molecular , Propriedades de Superfície
13.
Langmuir ; 26(24): 18600-5, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21090664

RESUMO

It is demonstrated here that bioactive glasses containing Au nanoparticles (AuNPs) can be selectively functionalized with small molecules carrying either amino or thiol groups by simply varying the temperature and pH of the functionalization batch. The results evidence the following. (i) At room temperature (RT), no functionalization of Au-free glass occurs, whereas in the case of glasses containing AuNPs, stable linkages form only with amino groups, as in this condition Au does not bind with either thiol or hydroxyl groups. The RT functionalization with cysteine and cystine confirms the preferential functionalization through the amino groups, while the -SH groups are oxidized to S-S bridges. (ii) The functionalization with cysteine and cystine, compared at pH = 5, 9, and 12, is shown not to take place at pH = 5 and to be hindered by the glass matrix dissolution at pH = 12 (with consequent release of AuNPs), while the best results are obtained at pH = 9. (iii) For the effect of reaction temperature, at 4 °C it is possible to obtain a strong Au-S interaction, whereas at RT, a weak Au-N linkage is formed. These results should allow production, in a selective way, of different bonds exhibiting different strengths and, consequently, different release times in solution, with a wide range of possible applications (for instance, weak Au-N bonds in the case of drug delivery, strong Au-S bonds in protein immobilization).


Assuntos
Aminas/química , Vidro/química , Ouro/química , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Materiais Biomiméticos/química , Cisteína/química , Cistina/química , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Especificidade por Substrato
14.
Materials (Basel) ; 13(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429291

RESUMO

(1) Background: a cell evaluation focused to verify the self-regenerative antioxidant activity is performed on cerium doped bioactive glasses. (2) Methods: the glasses based on 45S5 Bioglass®, are doped with 1.2 mol%, 3.6 mol% and 5.3 mol% of CeO2 and possess a polyhedral shape (~500 µm2). Glasses with this composition inhibit oxidative stress by mimicking catalase enzyme (CAT) and superoxide dismutase (SOD) activities; moreover, our previous cytocompatibility tests (neutral red (NR), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Bromo-2-deoxyUridine (BrdU)) reveal that the presence of cerium promotes the absorption and vitality of the cells. The same cytocompatibility tests were performed and repeated, in two different periods (named first and second use), separated from each other by four months. (3) Results: in the first and second use, NR tests indicate that the presence of cerium promotes once again cell uptake and viability, especially after 72 h. A decrease in cell proliferation it is observed after MTT and BrdU tests only in the second use. These findings are supported by statistically significant results (4) Conclusions: these glasses show enhanced proliferation, both in the short and in the long term, and for the first time such large dimensions are studied for this kind of study. A future prospective is the implantation of these bioactive glasses as bone substitute in animal models.

15.
Materials (Basel) ; 12(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683804

RESUMO

Salen-type metal complexes have been actively studied for their nonlinear optical (NLO) properties, and push-pull compounds with charge asymmetry generated by electron releasing and withdrawing groups have shown promising results. As a continuation of our research in this field and aiming at solid-state features, herein we report on the synthesis of mononuclear copper(II) derivatives bearing either tridentate N2O Schiff bases L(a-c)- and pyridine as the forth ancillary ligand, [Cu(La-c)(py)](ClO4) (1a-c), or unsymmetrically-substituted push-pull tetradentate N2O2 Schiff base ligands, [Cu(5-A-5'-D-saldpen/chxn)] (2a-c), both derived from 5-substituted salicylaldehydes (sal) and the diamines (1R,2R)-1,2-diphenylethanediamine (dpen) and (1S,2S)-1,2-diaminocyclohexane (chxn). All compounds were characterized through elemental analysis, infrared and UV/visible spectroscopies, and mass spectrometry in order to guarantee their purity and assess their charge transfer properties. The structures of 1a-c were determined via single-crystal X-ray diffraction studies. The geometries of cations of 1a-c and of molecules 2a-c were optimized through DFT calculations. The solid-state NLO behavior was measured by the Kurtz-Perry powder technique @1.907 µm. All chiral derivatives possess non-zero quadratic electric susceptibility (χ(2)) and an efficiency of about 0.15-0.45 times that of standard urea.

16.
Materials (Basel) ; 12(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621109

RESUMO

The phosphors of formula Ba5Si8O21:Eu2+,Dy3+ were synthesized and studied in order to improve their properties. Their synthesis conditions were evaluated as a function of precursors, crucible composition, flux agents, dopants and temperatures. The samples were characterised by means of a systematic investigation through elemental, kinetic, mineralogical (both qualitative and quantitative), and morphological analysis. This study allows for a careful evaluation of the parameters that influence the formation and properties of Ba5Si8O21:Eu2+,Dy3+ phosphors. As for the synthesis conditions, the use of Na2SiO3, BaCO3 and NH4Cl as precursors was very important to reduce the temperature and time of synthesis. The reducing atmosphere produced with purified coal was cheaper and gave results similar to the more traditional gas mixture (H2/N2). At the end of this study, a phosphor with improved long persistent phosphorescence (LPP) characteristics was obtained with Ba/Si = 0.7, Eu/Si = 2.8 × 10-3 and Dy/Si = 3.6 × 10-3 following a 6 h-synthesis in a quartz crucible.

17.
Materials (Basel) ; 12(4)2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781522

RESUMO

The cytocompatibility of potential bioactive cerium-containing (Ce3+/Ce4+) glasses is here investigated by preparing three different glasses with increasing amount of doping CeO2 (1.2, 3.6 and 5.3 mol% of CeO2, called BG_1.2, BG_3.6 and BG_5.3, respectively) based on 45S5 Bioglass® (called BG). These materials were characterized by Environmental Scanning Electron Microscopy (ESEM) and infrared spectroscopy (FTIR) after performing bioactivity tests in Dulbecco's Modified Eagle Medium (DMEM) solution, and the ions released in solution were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Optical Emission Spectrometry (ICP-OES). The data obtained clearly show that the glass surfaces of BG, BG_1.2 and BG_3.6 were covered by hydroxyapatite (HA), while BG_5.3 favored the formation of a cerium phosphate crystal phase. The cytotoxicity tests were performed using both murine long bone osteocyte-like (MLO-Y4) and mouse embryonic fibroblast (NIH/3T3) cell lines. The cerium-containing bioactive glasses show an increment in cell viability with respect to BG, and at long times, no cell aggregation and deformation were observed. The proliferation of NIH/3T3 cells increased with the cerium content in the glasses; in particular, BG_3.6 and BG_5.3 showed a higher proliferation of cells than the negative control. These results highlight and enforce the proposal of cerium-doped bioactive glasses as a new class of biomaterials for hard-tissue applications.

18.
Materials (Basel) ; 11(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498654

RESUMO

Beneficial effects in bone cell growth and antibacterial action are currently attributed to Ga3+ ions. Thus, they can be used to upgrade mesoporous bioactive glasses (MBGs), investigated for tissue engineering, whenever they released therapeutic amounts of gallium ions to the surrounding medium. Three gallium-enriched MBGs with composition (in mol %) xSiO2-yCaO-zP2O5-5Ga2O3, being x = 70, y = 15, z = 10 for Ga_1; x = 80, y = 12, z = 3 for Ga_2; and x = 80, y = 15, z = 0 for Ga_3, were investigated and compared with the gallium-free 80SiO2-15CaO-5P2O5 MBG (B). 29Si and 31P MAS NMR analyses indicated that Ga3+ acts as network modifier in the glass regions with higher polymerization degree and as network former in the zones with high concentration of classical modifiers (Ca2+ ions). Ga_1 and Ga_2 exhibited a quick in vitro bioactive response because they were coated by an apatite-like layer after 1 and 3 days in simulated body fluid. Although we have not conducted biological tests in this paper (cells or bacteria), Ga_1 released high but non-cytotoxic amounts of Ga3+ ions in Todd Hewitt Broth culture medium that were 140 times higher than the IC90 of Pseudomonas aeruginosa bacteria, demonstrating its potential for tissue engineering applications.

19.
Chem Biol Interact ; 167(3): 207-18, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17399695

RESUMO

Bioactive glasses such as Hench's 45S5 have applications to tissue engineering and bone repair: the insertion of zinc has been proposed to improve their bone-bonding ability and to slacken their dissolution in extracellular body fluids. In view of a potential clinical application, we have investigated whether zinc-containing 45S5 (HZ) glasses might be cytotoxic for human MG-63 osteoblasts. In our experimental conditions, after 24h of incubation HZ glasses released significant amounts of Zn(2+) and induced in MG-63 cells release of lactate dehydrogenase (index of cytotoxicity) and the following indexes of oxidative stress: (i) accumulation of intracellular malonyldialdehyde, (ii) increased activity of pentose phosphate pathway, (iii) increased expression of heme oxygenase-1, (iv) increased activity of Cu,Zn-superoxide dismutase, (v) decreased level of intracellular thiols. These effects were inversely related to the zinc content of glass powders, were mimicked by ZnCl(2) solutions and were prevented by either metal chelators (EDTA, NTA) or the antioxidant ascorbate, suggesting that Zn(2+) released fastly from HZ glasses can cause MG-63 cell damage via an oxidative stress. This work highlights the importance of designing Zn-containing bioactive glasses without cytotoxic effects and gives supplementary information about the prooxidant role of zinc in living systems.


Assuntos
Vidro , Osteoblastos/efeitos dos fármacos , Zinco/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cerâmica , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Vidro/química , Heme Oxigenase-1/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Malondialdeído/metabolismo , Camundongos , Osteoblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pentosefosfatos/metabolismo , Próteses e Implantes , Relação Estrutura-Atividade , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Zinco/química , Zinco/metabolismo
20.
J Phys Chem B ; 110(24): 11780-95, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16800478

RESUMO

A new empirical pairwise potential model for ionic and semi-ionic oxides has been developed. Its transferability and reliability have been demonstrated by testing the potentials toward the prediction of structural and mechanical properties of a wide range of silicates of technological and geological importance. The partial ionic charge model with a Morse function is used, and it allows the modeling of the quenching of melts, silicate glasses, and inorganic crystals at high-pressure and high-temperature conditions. The results obtained by molecular dynamics and free energy calculations are discussed in relation to the prediction of structural and mechanical properties of a series of soda lime silicate glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA