Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(2): 190-204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38386230

RESUMO

Extensive pesticide use for agriculture can diffusely pollute aquatic ecosystems through leaching and runoff events and has the potential to negatively affect non-target organisms. Atrazine and S-metolachlor are two widely used herbicides often detected in high concentrations in rivers that drain nearby agricultural lands. Previous studies focused on concentration-response exposure of algal monospecific cultures, over a short exposure period, with classical descriptors such as cell density, mortality or photosynthetic efficiency as response variables. In this study, we exposed algal biofilms (periphyton) to a concentration gradient of atrazine and S-metolachlor for 14 days. We focused on fatty acid composition as the main concentration-response descriptor, and we also measured chlorophyll a fluorescence. Results showed that atrazine increased cyanobacteria and diatom chlorophyll a fluorescence. Both herbicides caused dissimilarities in fatty acid profiles between control and high exposure concentrations, but S-metolachlor had a stronger effect than atrazine on the observed increase or reduction in saturated fatty acids (SFAs) and very long-chain fatty acids (VLCFAs), respectively. Our study demonstrates that two commonly used herbicides, atrazine and S-metolachlor, can negatively affect the taxonomic composition and fatty acid profiles of stream periphyton, thereby altering the nutritional quality of this resource for primary consumers.


Assuntos
Acetamidas , Atrazina , Herbicidas , Perifíton , Poluentes Químicos da Água , Atrazina/toxicidade , Clorofila A , Rios , Ecossistema , Ácidos Graxos , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Ecotoxicol Environ Saf ; 218: 112276, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33962273

RESUMO

Few ecotoxicity studies are available on thorium (Th) which hinders the ability to evaluate its ecotoxicological risk. Its release in the environment is often associated with the extraction of rare earth elements and uranium, as well as the field applications of phosphate fertilizers. This study investigates the effects of Th on microbial communities of periphytic biofilms. Ceramic plates were left to colonize for one month in the laboratory with a biofilm sampled from Cap Rouge river (QC, Canada). Plates were randomly placed in channels containing culture media representing three different conditions: a control condition (C0; background Th concentrations of 0.004 ± 0.002 nM), a low Th concentration condition (C1; 0.18 ± 0.09 nM Th) and a moderately high Th condition (C10; 8.7 ± 3.4 nM) for up to 4 weeks. The presence of Th modified the diatom community by changing its taxonomic structure, reducing diversity and increasing cell density. The taxonomic structure of the bacterial community, followed by 16S metabarcoding analysis, was affected with a significant decrease in Pseudanabaena and Shingopyxis genera in the two Th exposed conditions. No direct toxic effect of Th was observed on counted micromeiofauna but the changes in diatom and bacterial communities could explain the higher number of individual diatoms and micromeiofauna observed in Th-exposed conditions. This work shows that low concentrations of Th can modify biofilm structure, which, in turn, could disturb its ecologically key functions.

3.
Sci Total Environ ; 688: 960-969, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31726578

RESUMO

Fatty acids (FA) are crucial for the maintenance of membrane fluidity and play a central role in metabolic energy storage. Polyunsaturated fatty acids play an essential ecological role since they are key parameters in the nutritional value of algae. Pesticide impacts on fatty acid profiles have been documented in marine microalgae, but remain understudied in freshwater diatoms. The aims of this study were to: 1) investigate the impact of diuron and S-metolachlor on "classical descriptors" (photosynthesis, growth rate, pigment contents, and on the expression levels of target genes in freshwater diatoms), 2) examine the impact of these pesticides on diatom fatty acid profiles and finally, 3) compare fatty acid profiles and "classical descriptor" responses in order to evaluate their complementarity and ecological role. To address this issue, the model freshwater diatom Gomphonema gracile was exposed during seven days to diuron and S-metolachlor at 10 µg.L-1. G. gracile was mostly composed of the following fatty acids: 20:5n3; 16:1; 16:0; 16:3n4; 14:0 and 20:4n6 and highly unsaturated fatty acids were overall the best represented fatty acid class. S-metolachlor decreased the growth rate and chlorophyll a content of G. gracile and induced the expression of cox1, nad5, d1 and cat genes, while no significant impacts were observed on photosynthesis and carotenoid content. In a more global way, S-metolachlor did not impact the fatty acid profiles of G. gracile. Diuron inhibited photosynthesis, growth rate, chlorophyll a content and induced cat and d1 gene expressions but no significant effect was observed on carotenoid content. Diuron decreased the percentage of highly unsaturated fatty acids but increased the percentage of monounsaturated fatty acids. These results demonstrated that fatty acids responded to diuron conversely to pigment content, suggesting that fatty acids can inform on energy content variation in diatoms subjected to herbicide stress.


Assuntos
Acetamidas/toxicidade , Diatomáceas/fisiologia , Diurona/toxicidade , Herbicidas/toxicidade , Ácidos Graxos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA