Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6553, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772954

RESUMO

The nature of the lower crust and the crust-mantle transition is fundamental to Earth sciences. Transformation of lower crustal rocks into eclogite facies is usually expected to result in lower crustal delamination. Here we provide compelling evidence for long-lasting presence of lower crustal eclogite below the seismic Moho. Our new wide-angle seismic data from the Paleoproterozoic Fennoscandian Shield identify a 6-8 km thick body with extremely high velocity (Vp ~ 8.5-8.6 km/s) and high density (>3.4 g/cm3) immediately beneath equally thinned high-velocity (Vp ~ 7.3-7.4 km/s) lowermost crust, which extends over >350 km distance. We relate this observed structure to partial (50-70%) transformation of part of the mafic lowermost crustal layer into eclogite facies during Paleoproterozoic orogeny without later delamination. Our findings challenge conventional models for the role of lower crustal eclogitization and delamination in lithosphere evolution and for the long-term stability of cratonic crust.

2.
Sci Rep ; 9(1): 10498, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324841

RESUMO

Saucer-shaped intrusions of tens of meters to tens of kilometres across have been observed both from surface geological mapping and geophysical observations. However, there is only one location where they have been reported to extend c. 100 km laterally, and emplaced both in a sedimentary basin and the crystalline basement down to 12 km depth. The legacy BABEL offshore seismic data, acquired over the central Fennoscandian Shield in 1989, have been recovered and reprocessed with the main goal of focusing on this series of globally unique crustal-scale saucer-shaped intrusions present onshore and offshore below the Bothnian Sea. The intrusions (c. 1.25 Ga), emplaced in an extensional setting, are observed within both sedimentary rocks (<1.5 Ga) and in the crystalline basement (>1.5 Ga). They have oval shapes with diameters ranging 30-100 km. The reprocessed seismic data provide evidence of up-doming of the lower crust (representing the melt reservoir) below the intrusions that, in turn, are observed at different depths in addition to a steep seismically transparent zone interpreted to be a discordant feeder dyke system. Relative age constraints and correlation with onshore saucer-shaped intrusions of different size suggest that they are internally connected and fed by each other from deeper to shallower levels. We argue for a nested emplacement mechanism and against a controlling role by the overlying sedimentary basin as the saucer-shaped intrusions are emplaced in both the sedimentary rocks as well as in the underlying crystalline basement. The interplay between magma pressure and overburden pressure, as well as the, at the time, ambient stress regime, are responsible for their extensive extent and rather constant thicknesses (c. 100-300 m). Saucer-shaped intrusions may therefore be present elsewhere in the crystalline basement to the same extent as observed in this study some of which are a significant source of raw materials.

3.
Sci Rep ; 7(1): 10325, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871161

RESUMO

To be fully embraced into mineral exploration, seismic data require to be acquired fast, cheaper and with minimum environmental impacts addressing also the often brown-field highly noisy environment where these surveys are employed. Since 2013 and through a number of case studies, we have been testing a newly developed for urban environment, digital-based 240 m long, seismic landstreamer for mine planning and mineral exploration purposes. Here, we present a pilot study examining the potential of the streamer for deep targeting a known, down to approximately 850 m depth, iron-oxide mineralization in the Bergslagen mineral district of central Sweden. Combined streamer (100-3C-MEMS (micro-electromechanical system), 2-4 m spacing) and 75 wireless recorders (mixed 10 Hz and MEMS, 10 m spacing) were used. A Bobcat-mounted drophammer, 500 kg, was used to generate the seismic signal. Within 4 days, approximately 3.5 km of seismic data using 2-10 m source and receiver spacing were acquired. Reflection data processing results clearly image the mineralization as a set of strong high-amplitude reflections and likely slightly extending beyond the known 850 m depth. This is encouraging and suggests such a cost-effective exploration method can be used in the area and elsewhere to delineate similar depth range iron-oxide deposits.

4.
Sci Rep ; 6: 27635, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282420

RESUMO

Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

5.
Sci Rep ; 3: 1677, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23591904

RESUMO

Carbonatites are rare, carbonate-rich magmatic rocks that make up a minute portion of the crust only, yet they are of great relevance for our understanding of crustal and mantle processes. Although they occur in all continents and from Archaean to present, the deeper plumbing system of carbonatite ring-complexes is usually poorly constrained. Here, we show that carbonatite ring-complexes can be explained by caldera-style volcanism. Our geophysical investigation of the Alnö carbonatite ring-complex in central Sweden identifies a solidified saucer-shaped magma chamber at ~3 km depth that links to surface exposures through a ring fault system. Caldera subsidence during final stages of activity caused carbonatite eruptions north of the main complex, providing the crucial element to connect plutonic and eruptive features of carbonatite magmatism. The way carbonatite magmas are stored, transported and erupt at the surface is thus comparable to known emplacement styles from silicic calderas.


Assuntos
Carbonatos/química , Minerais/química , Erupções Vulcânicas/análise , Carbonatos/análise , Geologia , Minerais/análise , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA