Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 106(1): 39-45, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34279983

RESUMO

The Potyvirus Moroccan watermelon mosaic virus (MWMV) naturally infects and severely threatens production of cucurbits and papaya. In this study, we identified and characterized MWMV isolated from pumpkin (Cucurbita moschata) intercropped with MWMV-infected papaya plants through next-generation sequencing (NGS) and Sanger sequencing approaches. Complete MWMV genome sequences were obtained from two pumpkin samples through NGS and validated using Sanger sequencing. The isolates shared 83.4 to 83.7% nucleotide (nt) and 92.3 to 95.1% amino acid (aa) sequence identities in the coat protein and 79.5 to 79.9% nt and 89.2 to 89.7% aa identities in the polyprotein with papaya isolates of MWMV. Phylogenetic analysis using complete polyprotein nt sequences revealed the clustering of both pumpkin isolates of MWMV with corresponding sequences of cucurbit isolates of the virus from other parts of Africa and the Mediterranean regions, distinct from a clade formed by papaya isolates. Through sap inoculation, a pumpkin isolate of MWMV was pathogenic on zucchini (Cucurbita pepo), watermelon (Citrullus lanatus), and cucumber (Cucumis sativus) but not on papaya. Conversely, the papaya isolate of MWMV was nonpathogenic on pumpkin, watermelon, and cucumber, but it infected zucchini. The results suggest the occurrence of two strains of MWMV in Kenya having different biological characteristics associated with the host specificity.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Cucurbita , Potyvirus , Quênia , Filogenia , Doenças das Plantas , Potyvirus/genética
2.
Genes (Basel) ; 14(9)2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37761955

RESUMO

Micronutrient deficiencies, particularly of iron (Fe) and zinc (Zn), in the diet contribute to health issues and hidden hunger. Enhancing the Fe and Zn content in globally staple food crops like rice is necessary to address food malnutrition. A Genome-Wide Association Study (GWAS) was conducted using 85 diverse rice accessions from the Democratic Republic of Congo (DRC) to identify genomic regions associated with grain Fe and Zn content. The Fe content ranged from 0.95 to 8.68 mg/100 g on a dry weight basis (dwb) while Zn content ranged from 0.87 to 3.8 mg/100 g (dwb). Using MLM and FarmCPU models, we found 10 significant SNPs out of which one SNP on chromosome 11 was associated with the variation in Fe content and one SNP on chromosome 4 was associated with the Zn content, and both were commonly detected by the two models. Candidate genes belonging to transcription regulator activities, including the bZIP family genes and MYB family genes, as well as transporter activities involved in Fe and Zn homeostasis were identified in the vicinity of the SNP markers and selected. The identified SNP markers hold promise for marker-assisted selection in rice breeding programs aimed at enhancing Fe and Zn content in rice. This study provides valuable insights into the genetic factors controlling Fe and Zn uptake and their transport and accumulation in rice, offering opportunities for developing biofortified rice varieties to combat malnutrition among rice consumers.


Assuntos
Oryza , Produtos Agrícolas , Estudo de Associação Genômica Ampla , Ferro , Oryza/genética , Melhoramento Vegetal , Zinco
3.
Biomed Res Int ; 2019: 7056940, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781636

RESUMO

To evaluate the origin, genetic diversity, and population structure of domesticated rabbits in Kenya, a 263-base pair region of mtDNA D-loop region of 111 rabbits sampled from Kakamega, Vihiga, and Bungoma counties in the western region, Laikipia and Nyandarua counties in the central region, and Kitui, Machakos, and Makueni in the eastern region of the country were analyzed. The average haplotype (0.40702) and nucleotide (0.01494) diversities observed were low, indicating low genetic diversity of domesticated rabbits in Kenya. This study resolved 5 unique haplotypes in the mtDNA D-loop region. A population genetic structure distinguishing Europe grouping and domesticated rabbits in Kenya was obtained on incorporating 32 known haplotypes. Domesticated rabbits in Kenya clustered together with rabbits from other geographic regions, suggesting common origin. The results suggested that the Kenyan domesticated rabbits may have originated from Europe. Integration of exotic breeds into breeding programmes could have contributed to the low genetic diversity. These results provide useful information for breeding and conservation decisions by the relevant stakeholders in the agriculture industry in Kenya.


Assuntos
Variação Genética/genética , Coelhos/genética , Animais , Cruzamento/métodos , DNA Mitocondrial/genética , Europa (Continente) , Genética Populacional/métodos , Haplótipos/genética , Quênia , Mitocôndrias/genética , Filogenia , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA